MATH 3132 Tutorial 4

1. Evaluate the surface integral

$$
\oiint_{S}\left[x^{2} \hat{\mathbf{i}}-y^{2} \hat{\mathbf{j}}-z\left(x^{2}+y^{2}\right) \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S
$$

where S is the surface $x^{2}+y^{2}+z^{2}=a^{2}(a>0$ is a constant $)$, and $\hat{\mathbf{n}}$ is the unit inward pointing normal to the surface.
2. Evaluate the surface integral

$$
\oiint_{S}\left(x^{2} z \hat{\mathbf{i}}-y \hat{\mathbf{j}}+3 z^{2} \hat{\mathbf{k}}\right) \cdot \hat{\mathbf{n}} d S
$$

where S is the surface enclosing the volume bounded by $z=\sqrt{x^{2}+y^{2}}$ and $z=1$, and $\hat{\mathbf{n}}$ is the unit outer normal to S.
3. Evaluate the surface integral

$$
\oiint_{S}\left(x^{3} \hat{\mathbf{i}}+y^{3} \hat{\mathbf{j}}+x z \hat{\mathbf{k}}\right) \cdot \hat{\mathbf{n}} d S
$$

where S is the surface enclosing the volume bounded by $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$, and $\hat{\mathbf{n}}$ is the unit inward pointing normal to S.
4. Evaluate the surface integral

$$
\oiint_{S}\left(x^{2} \hat{\mathbf{i}}+y^{2} \hat{\mathbf{j}}-x y^{3} \hat{\mathbf{k}}\right) \cdot \hat{\mathbf{n}} d S
$$

where S is the surface enclosing the volume in the first octant bounded by $x+y+z=1, x=0$, $y=0$, and $\mathrm{z}=0$, and $\hat{\mathbf{n}}$ is the unit inward pointing normal to S.
5. Evaluate the surface integral

$$
\iint_{S}[x \hat{\mathbf{i}}+y \hat{\mathbf{j}}-(1+x z) \hat{\mathbf{k}}] \cdot \hat{\mathbf{n}} d S
$$

where S is that part of the surface $z=4-\left(x^{2}+y^{2}\right)$ above the $x y$-plane, and $\hat{\mathbf{n}}$ is the unit upward pointing normal to S.
6. Evaluate the surface integral

$$
\iint_{S}\left[\left(x^{4}+y\right) \hat{\mathbf{i}}+\left(z+y^{3}\right) \hat{\mathbf{j}}+z^{2} \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S
$$

where S is that part of the surface $z=x^{2}+y^{2}-4$ below $z=1$, and $\hat{\mathbf{n}}$ is the unit downward pointing normal to S.
7. Evaluate the surface integral

$$
\iint_{S}\left[\left(x y^{2}+z\right) \hat{\mathbf{i}}+y z^{2} \hat{\mathbf{j}}-x y^{3} \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S
$$

where S is that part of $x^{2}+y^{2}+z^{2}=2$ inside $x=\sqrt{y^{2}+z^{2}}$, and $\hat{\mathbf{n}}$ is the unit normal with positive x-component.
Answers: 1. $8 \pi a^{5} / 15$
2. $7 \pi / 6$
3. -8π
4. $-1 / 6$
5. 12π
6. $1915 \pi / 12$
7. $(64 \sqrt{2}-41) \pi / 60$

