MATH 3132 Tutorial 4

1. Evaluate the surface integral

$$\oint \int_{S} [x^2 \hat{\mathbf{i}} - y^2 \hat{\mathbf{j}} - z(x^2 + y^2) \hat{\mathbf{k}}] \cdot \hat{\mathbf{n}} \, dS$$

where S is the surface $x^2 + y^2 + z^2 = a^2$ (a > 0 is a constant), and $\hat{\mathbf{n}}$ is the unit inward pointing normal to the surface.

2. Evaluate the surface integral

where S is the surface enclosing the volume bounded by $z = \sqrt{x^2 + y^2}$ and z = 1, and $\hat{\mathbf{n}}$ is the unit outer normal to S.

3. Evaluate the surface integral

where S is the surface enclosing the volume bounded by $z = x^2 + y^2$ and $z = 4 - x^2 - y^2$, and $\hat{\mathbf{n}}$ is the unit inward pointing normal to S.

4. Evaluate the surface integral

$$\oint \int_{S} (x^2 \hat{\mathbf{i}} + y^2 \hat{\mathbf{j}} - xy^3 \hat{\mathbf{k}}) \cdot \hat{\mathbf{n}} \, dS$$

where S is the surface enclosing the volume in the first octant bounded by x + y + z = 1, x = 0, y = 0, and z=0, and $\hat{\mathbf{n}}$ is the unit inward pointing normal to S.

5. Evaluate the surface integral

$$\iint_{S} \left[x \hat{\mathbf{i}} + y \hat{\mathbf{j}} - (1 + xz) \hat{\mathbf{k}} \right] \cdot \hat{\mathbf{n}} \, dS$$

where S is that part of the surface $z = 4 - (x^2 + y^2)$ above the xy-plane, and $\hat{\mathbf{n}}$ is the unit upward pointing normal to S.

6. Evaluate the surface integral

$$\iint_{S} \left[(x^4 + y)\hat{\mathbf{i}} + (z + y^3)\hat{\mathbf{j}} + z^2\hat{\mathbf{k}} \right] \cdot \hat{\mathbf{n}} \, dS$$

where S is that part of the surface $z = x^2 + y^2 - 4$ below z = 1, and $\hat{\mathbf{n}}$ is the unit downward pointing normal to S.

7. Evaluate the surface integral

$$\iint_{S} \left[(xy^2 + z)\hat{\mathbf{i}} + yz^2\hat{\mathbf{j}} - xy^3\hat{\mathbf{k}} \right] \cdot \hat{\mathbf{n}} \, dS$$

where S is that part of $x^2 + y^2 + z^2 = 2$ inside $x = \sqrt{y^2 + z^2}$, and $\hat{\mathbf{n}}$ is the unit normal with positive *x*-component.

Answers: 1.
$$8\pi a^5/15$$
 2. $7\pi/6$ 3. -8π 4. $-1/6$ 5. 12π 6. $1915\pi/12$ 7. $(64\sqrt{2}-41)\pi/60$