MATH 3132 Tutorial 5

1. Evaluate the line integral

$$
\oint_{C}\left[\left(2 x e^{y}+y^{3}\right) \hat{\mathbf{i}}+\left(x^{2} e^{y}+z\right) \hat{\mathbf{j}}+x z^{3} \hat{\mathbf{k}}\right] \cdot d \mathbf{r}
$$

once around the curve C : $z=x^{2}+y^{2}, z=10-4 x^{2}-4 y^{2}$ directed counterclockwise as viewed from the origin.
2. Evaluate the line integral

$$
\oint_{C}\left(x \hat{\mathbf{i}}+y^{2} \hat{\mathbf{j}}-y^{3} \hat{\mathbf{k}}\right) \cdot d \mathbf{r}
$$

where C is the edge of the triangle bounding that part of $2 x+y+z=2$ in the first octant, directed clockwise as viewed from the origin.
3. Evaluate the line integral

$$
\oint_{C} z^{3} d x+x^{2} y d y+2 y d z
$$

where C is the curve $x^{2}+y^{2}+z^{2}=4, x=1$, directed counterclockwise as viewed from the origin.
4. Evaluate the line integral

$$
\oint_{C} 4 x^{3} e^{y} d x+\left(x^{3}+x^{4} e^{y}\right) d y+(x y+z) d z
$$

where C is the curve $x^{2}+y^{2}+z^{2}=4, z=\sqrt{x^{2}+y^{2}}$, directed clockwise as viewed from the origin.
5. Evaluate the line integral

$$
\oint_{C} 3 y d x+y z^{2} d y+y^{2} z d z
$$

where C is the curve $x^{2}+y^{2}=4, x+y+z=1$, directed counterclockwise as viewed from above.
6. Evaluate the line integral

$$
\oint_{C}\left(y \hat{\mathbf{i}}+2 y z \hat{\mathbf{j}}+x^{2} \hat{\mathbf{k}}\right) \cdot d \mathbf{r}
$$

where C is the curve $x=\cos t, y=\sin t, z=\cos t \sin t,-\pi \leq t \leq \pi$.
7. Evaluate the line integral

$$
\oint_{C}\left[\left(2 y^{3} / 3\right) \hat{\mathbf{i}}+2 x y^{2} \hat{\mathbf{j}}+x z \hat{\mathbf{k}}\right] \cdot d \mathbf{r}
$$

where C is the curve $x=2 \cos t, y=3 \sin t, z=4 \cos ^{2} t-9 \sin ^{2} t,-\pi \leq t \leq \pi$.
Answers: 1. 3π
2. $-8 / 3$
3. -6π
4. 3π
5. -12π
6. 0
7. 0

