MATH 3132 Tutorial 6

1. Consider the differential equation

$$
\left(3-x^{2}\right) y^{\prime \prime}+6 y=0
$$

(a) Determine a minimm value for the radius of convergence of a power series solution of the differential equation in powers of x.
(b) If the power series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ is substituted into the differential equation, the following recurrence relation is obtained

$$
c_{n+2}=\frac{n-3}{3(n+1)} c_{n}, \quad n \geq 0
$$

Do NOT prove this. Use this relation to obtain a general solution for the differential equation. Express any infinite series in sigma notation simplified as much as possible.
2. Consider the differential equation

$$
\left(3-2 x^{2}\right) y^{\prime \prime}+4 y=0
$$

Substitute $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ into the differential equation to obtain a recurrence relation for the coefficients a_{n}. Do NOT find the power series, only the recurrence relation.
3. (a) Show that $x=0$ is an ordinary point of the differential equation

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-5 y=0
$$

(b) Suppose a solution of the differential equation in part (a) is represented in terms of its Maclaurin series

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Find a recurrence relation for the coefficients c_{n}, and simplify it as much as possible. Do NOT attempt to iterate the relation.
4. (a) Determine a guaranteed open interval of convergence for the solution of the differential equation

$$
\left(x^{2}+3\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

when the solution is represented in terms of its Maclaurin series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$.
(b) Coefficients c_{n} must satisfy the recurrence relation

$$
c_{n+2}=\frac{-(n-1)}{3(n+1)} c_{n}, \quad n \geq 0 .
$$

Use this recurrence relation to find a general solution of the differential equation. Write any infinite series in sigma notation, simplified as much as possible.
5. Consider the differential equation

$$
y^{\prime \prime}+x^{2} y^{\prime}+2 x y=0 .
$$

(a) What are the ordinary points of the differential equation?
(b) Suppose a solution of the differential equation is represented in terms of its Maclaurin series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$. Find a recurrence relation for the c_{n}, simplified as much as possible. Do NOT attempt to iterate the formula.
(c) From your work in part (b), or otherwise, what can you say about c_{0}, c_{1}, and c_{2} ?
6. Consider the differential equation

$$
y^{\prime \prime}-x y^{\prime}+2 y=0 .
$$

(a) Suppose a solution of the differential equation is represented in terms of its Maclaurin series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$. Find a recurrence relation for the c_{n}, simplified as much as possible. Do NOT iterate the relation.
(b) From your recurrence relation in part (a), can you say that any of the coefficients c_{n} must be zero? If so, which ones, and why?
7. When a solution of the differential equation

$$
\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

is represented in terms of its Maclaurin series $y=\sum_{n=0}^{\infty} c_{n} x^{n}$, coefficients c_{n} satisfy the recurrence relation

$$
(n+2)(n+1) c_{n+2}=\left(2-n-n^{2}\right) c_{n}, \quad n \geq 0 .
$$

Do NOT show this; assume it.
(a) Using only properties of the differential equation, determine a guaranteed open interval of convergence for the Maclaurin series solution. Explain your reasoning.
(b) Use the recurrence relation to find a general solution of the differential equation. Write any series using sigma notation simplified as much as possible.

Answers: 1.(a) $\sqrt{3}$ (b) $c_{0} \sum_{n=0}^{\infty} \frac{1}{3^{n-1}(2 n-1)(2 n-3)} x^{2 n}+c_{1}\left(1-\frac{x^{3}}{3}\right)$
2. $a_{n+2}=\frac{2(n-2)}{3(n+2)} a_{n}, n \geq 0 \quad$ 3. $c_{n+2}=\frac{n-5}{n+2} c_{n}, n \geq 0$
4.(a) $-\sqrt{3}<x<\sqrt{3}$ (b) $c_{1} x+c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3^{n}(2 n-1)} x^{2 n}$
5.(a) All points (b) $c_{2}=0, c_{n+3}=\frac{-c_{n}}{n+3}, n \geq 0$ (c) c_{0} and c_{1} arbitrary
6. (a) $c_{n+2}=\frac{n-2}{(n+1)(n+2)} c_{n}, n \geq 0$ (b) $c_{2 n}=0$ for $n \geq 2$
7.(a) $-1<x<1$ (b) $c_{1} x+c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n-1} x^{2 n}$

