MATH 3132 Tutorial 8

1. Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{ll}
x-3, & -3 \leq x \leq 0, \\
x+3, & 0<x<3 .
\end{array} \quad f(x+6)=f(x)\right.
$$

Simplify coefficients as much as possible. Draw a graph on the interval $-6 \leq x \leq 6$ of the function to which the Fourier series converges.
2. Find the Fourier series of the function in the figure below. Simplify the series as much as possible.

3. Find coefficients c_{n} so that the series $\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{4}$ converges to $2 x-1$ on the interval $0<x<4$.
4. Suppose the function

$$
f(x)=\left\{\begin{array}{ll}
x, & 0<x \leq 2, \\
5-x, & 2<x<4 .
\end{array} \quad f(x+4)=f(x)\right.
$$

is expanded in a Fourier series. Find the coefficients a_{n} in the Fourier series, simplified as much as possible. Do NOT calculate the coefficients b_{n}.
5. (a) Explain how, and why, you can expand the function

$$
f(x)= \begin{cases}1, & 0<x<L / 2 \\ -1, & L / 2<x<L\end{cases}
$$

in a series of the form $\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}$.
(b) Find expressions for the coefficients, simplifies ad much as possible.
(c) Use your series to evaluate $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$.
6. Calculate, simplified as much as possible, the Fourier sine series of $f(x)=3+x$ on the interval $0 \leq x \leq 3$.

Answers: 1. $\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1+2(-1)^{n+1}}{n} \sin \frac{n \pi x}{3}$

2. $\frac{4 L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin \frac{(2 n-1) \pi x}{L} \quad$ 3. $-\frac{2}{n \pi}\left[7(-1)^{n}+1\right]$
4. $a_{0}=3, a_{n}=\frac{-4}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right], n \geq 1$
5.(b) $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1} \cos \frac{(2 n-1) \pi x}{L}$ (b) $\pi / 4 \quad$ 6. $\frac{6}{\pi} \sum_{n=1}^{\infty} \frac{1+2(-1)^{n+1}}{n} \sin \frac{n \pi x}{3}$

