MATH 3132 Tutorial 9

1. (a) Expand the function $f(x)=3 x, 0<x<2$ in terms of the eigenfunctions of the Sturm-Liouville system

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(2)=0
$$

(b) Does the series in part (a) converge to $f(x)$ at $x=0$ and $x=2$? You may use the fact that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.
2. Determine the value of the constant a so that the functions $f(x)=x$ and $g(x)=x^{2}+a$ are orthogonnal on the interval $0 \leq x \leq 2$ with respect to the weight function $w(x)=x^{2}$.
3. (a) Find eigenvalues and eigenfunctions of the Sturm-Liouville system

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+4 \lambda y=0, \quad 0<x<1, \quad y(0)=0, \quad y(1)=0
$$

You may assume that $\lambda \geq 16$.
(b) What is the weight function for the system?
4. (a) Show that eigenvalues of the Sturm-Liouville system

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+\lambda y=0, \quad 0<x<1, \quad y(0)=0, \quad y(1)=0
$$

are $\lambda_{n}=1+n^{2} \pi^{2}$, where $n>0$ is an integer. You may assume in your calculations that $\lambda>1$.
(b) What are corresponding eigenfunctions?

5 For what value(s) of constant k are the functions $f(x)=k x^{2}+1$ and $g(x)=2 x$ orthogonal on the interval $0 \leq x \leq 1$ with respect to the weight function $w(x)=x+1$?

Answers: 1. (a) $\frac{48}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \sin \frac{(2 n-1) \pi x}{4}$ (b) Yes, Yes \quad 2. $-8 / 3$
3. (a) $1 / 16+n^{2} \pi^{2} / 4, y_{n}(x)=e^{-x / 2} \sin (n \pi x)$ (b) $4 e^{x}$
4. (a) $1+n^{2} \pi^{2}$ (b) $e^{-x} \sin (n \pi x) \quad$ 5. $-50 / 27$

