
Solution to Exam Fall 2024

10 1. Evaluate the line integral
∫
©∨

C

y

x2 + 2y2
dx+

x

x2 + 2y2
dy

where C is the curve x2 + 2y2 = 4.

Solution 1: If we set x = 2 cos t, y =
√

2 sin t, 0 ≤ t ≤ 2π, then

∫
©∨

C

y

x2 + 2y2
dx+

x

x2 + 2y2
dy =

∫ 2π

0

[√
2 sin t
4

(−2 sin t dt) +
2 cos t

4
(
√

2 cos t dt)

]

=
1√
2

∫ 2π

0

(cos2 t− sin2 t) dt =
1√
2

∫ 2π

0

cos 2t dt

=
1√
2

{
1
2

sin 2t
}2π

0

= 0.

Solution 2: Since x2 + 2y2 = 4 on the curve, we can rewrite the line integral as
∫
©∨

C

y

4
dx+

x

4
dy =

1
4

∫
©∨

C

(y dx+ x dy).

Since ∇(xy) = yî+xĵ, this line integral is independent of path in the entire xy-plane. Because the
curve is closed, its value is zero.

Solution 3: Since x2 + 2y2 = 4 on the curve, we can rewrite the line integral as
∫
©∨

C

y

4
dx+

x

4
dy =

1
4

∫
©∨

C

(y dx+ x dy).

We can now use Green’s Theorem to replace the line integral with a double integral over the interior
R of C,

∫
©∨

C

y

4
dx+

x

4
dy =

1
4

∫∫

R

(0) dA = 0.



15 2. Evaluate the surface integral
∫∫

S

(x î − y2z ĵ + xz2 k̂) · n̂ dS

were S is that part of the surface z = x2 + y2 below the plane z = 1, and n̂ is the downward
pointing unit normal to S.

Solution 1: A normal vector to S is
∇(x2 + y2 − z) = 2x̂i + 2yĵ− k̂ so that

n̂ =
(2x, 2y,−1)√
1 + 4x2 + 4y2

.

If we denote the integral by I, then,

x
y

z
1

11

z= x y+2 2

x y+2 2=1

I =
∫∫

Sxy

(2x2 − 2y3z − xz2)√
1 + 4x2 + 4y2

√
1 + (2x)2 + (2y)2 dA =

∫∫

Sxy

[2x2 − 2y3(x2 + y2) − x(x2 + y2)2] dA,

where Sxy is the interior of the circle x2 + y2 = 1 in the xy-plane. Since 2y3(x2 + y2) is an
odd function of y and Sxy is symmetric about the x-axis, this term integrates to zero. Similarly,
x(x2 + y2)2 is an odd function of x, and Sxy is symmetric about the y-axis so this term also
integrates to zero. On the remaining term, we use polar coordinates,

I = 8
∫ π/2

0

∫ 1

0

r2 cos2 θ r dr dθ = 8
∫ π/2

0

{
r4

4
cos2 θ

}1

0

dθ

= 2
∫ π/2

0

(
1 + cos 2θ

2

)
dθ =

{
θ +

1
2

sin 2θ
}π/2

0

=
π

2
.

Solution 2: We close the surface with that part of the plane z = 1 inside x2 + y2 = 1, call it S′.
We use the divergence theorem on

I ′ =
∫∫
⊂⊃

S+S′
(x î− y2z ĵ + xz2 k̂) · n̂ dS =

∫∫∫

V

(1− 2yz + 2xz) dV ,

where V is the volume bounded by S and S′. Since 2yz is an odd function of y and V is symmetric
about the xz-plane, this term integrates to zero. Similarly, because 2xz is odd in x and V is
symmetrc about the yz-plane, this term also integrates to zero. With cylindrical coordinates,

I ′ = 4
∫ π/2

0

∫ 1

0

∫ 1

r2
r dz dr dθ = 4

∫ π/2

0

∫ 1

0

r(1− r2) dr dθ = 4
∫ π/2

0

{
r2

2
− r4

4

}1

0

dθ =
∫ π/2

0

dθ =
π

2
.

Since∫∫

S′
(x î − y2z ĵ + xz2 k̂) · n̂ dS =

∫∫

S′
(x î− y2z ĵ + xz2 k̂) · k̂ dS =

∫∫

S′
xy

xz2 dA =
∫∫

S′
xy

x dA = 0,

it follows that

I = I ′ −
∫∫

S′
(x î − y2z ĵ + xz2 k̂) · n̂ dS =

π

2
.



10 3. Find the Fourier series of the function

f(x) =
{
−x2, −1 < x < 0
x2, 0 < x < 1

f(x+ 2) = f(x).

Draw a graph of the function to which the Fourier series converges on the interval −4 ≤ x ≤ 4.

Since the function is odd, we find the Fourier sine series,

f(x+) + f(x−)
2

=
∞∑

n=1

bn sinnπx,

where

bn = 2
∫ 1

0

x2 sinnπxdx = 2

[{
− x2

nπ
cosnπx

}1

0

−
∫ 1

0

− 2x
nπ

cosnπx dx

]

= 2
[
(−1)n+1

nπ
+

2
nπ

{ x

nπ
sinnπx

}1

0
− 2
nπ

∫ 1

0

sinnπx
nπ

dx

]

=
2(−1)n+1

nπ
− 4
n2π2

{
−cosnπx

nπ

}1

0
=

2(−1)n+1

nπ
+

4
n3π3

[(−1)n − 1].

Hence,

f(x+) + f(x−)
2

=
2
π

∞∑

n=1

[
(−1)n+1

n
+

2
n3π2

[(−1)n − 1]
]

sinnπx,

x

y

1

-1

-4 -3 -2 -1 1 2 3 4



20 4. (a) Show that the indicial roots of a Frobenius solution y(x) =
∞∑

n=0

anx
n+r of the differential

equation

(x− x2)
d2y

dx2
− 3

dy

dx
+ 2y = 0

are r = 0, 4.
(b) Assuming that the recurrence relation for the an corresponding to r = 0 is

(n− 3)an+1 = (n− 2)an, n ≥ 0,

find the solution to the differential equation. Is it a general solution? Explain.
Five bonus marks if you can express the solution in closed form (that is, no series).

(a) When we substitute the Frobenius solution into the differential equation

0 =
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑

n=0

−(n+ r)(n+ r − 1)anx
n+r +

∞∑

n=0

−3(n+ r)anx
n+r−1

+
∞∑

n=0

2anx
n+r

=
∞∑

n=−1

(n+ r + 1)(n+ r)an+1x
n+r +

∞∑

n=0

−(n+ r)(n+ r − 1)anx
n+r +

∞∑

n=−1

−3(n+ r + 1)an+1x
n+r

+
∞∑

n=0

2anx
n+r.

The indicial equation comes from setting the coefficient of the lowest power of x equal to zero,

0 = r(r − 1)a0 − 3ra0 = r(r − 4)a0.

Thus, indicial roots are r = 0, 4.
(b) When n = 0, −3a1 = −2a0 =⇒ a1 = 2a0

3
When n = 1, −2a2 = −a1 =⇒ a2 = a0

3
When n = 2, a3 = 0.

For n > 3, we write an+1 =
n− 2
n− 3

an.

When n = 4, a5 = 2a4.
When n = 5, a6 = 3

2a5 = 3a4.
When n = 6, a7 = 4

3
a3 = 4a4.

The solution is

y(x) = a0

(
1 +

2x
3

+
x2

3

)
+ a4

(
x4 + 2x5 + 3x6 + · · ·

)

= a0

(
1 +

2x
3

+
x2

3

)
+ a4

∞∑

n=4

(n− 3)xn.

This is a general solution since it contains two arbitrary constants.



5 5. Find value(s) of constant k if the functions f(x) = x2 + kx+ 1 and g(x) = x are to be orthogonal
on the interval 0 ≤ x ≤ 2 if the weight function is w(x) = x.

Fo orthogonality,

0 =
∫ 2

0

(x2 + kx+ 1)(x)(x) dx =
{
x5

5
+
kx4

4
+
x3

3

}2

0

=
32
5

+ 4k +
8
3
.

This implies that k = −34/15

6 6. Set up, but do NOT solve, an initial boundary value problem for displacement y(x, t) of a taut
string of length L with constant tension τ , and constant mass per unit length ρ. The string is given
initial displacement f(x) and initial velocity g(x). Take gravity and a damping force proportional
to velocity into account. The right end of the string is fixed on the x-axis, and the left end is
looped around the y-axis and is free to move vertically along the y-axis. Identify any additional
constants that you introduce into the problem.

The initial boundary value problem is

∂2y

∂t2
=
τ

ρ

∂2y

∂x2
− 9.81 − β

∂y

∂t
, 0 < x < L, t > 0,

yx(0, t) = 0, t > 0,
y(L, t) = 0, t > 0,
y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = g(x), 0 < x < L.

β is a damping constant.



22 7. Solve the following boundary-value problem

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L,

V (x, 0) = 0, 0 < x < L,

V (x,L) = 0, 0 < x < L,

V (0, y) = 1, 0 < y < L,

V (L, y) = 0, 0 < y < L.

Justify each step in your solution.

We begin by finding separated functions V (x, y) = X(x)Y (y) satisfying the PDE and the first,
second and fourth boundary conditions. The PDE requires

X ′′Y +XY ′′ = 0 =⇒ X ′′

X
= −Y

′′

Y
= λ =⇒ X ′′ − λX = 0, Y ′′ + λY = 0.

The first, second and fourth boundary conditions require X(L) = 0, Y (0) = 0, and Y (L) =
0. Eigenvalues of the Sturm-Liouville system in Y (y) are λn = n2π2/L2 with corresponding
eigenfunctions Yn(y) = sin nπy

L . Solutions of X ′′ − (n2π2/L2)X = 0 are Xn(x) = C1e
nπx/L +

C2e
−nπx/L. The condition X(L) = 0 requires 0 = C1e

nπ + C2e
−nπ =⇒ C2 = −C1e

2nπ. Thus,
separated functions are

Xn(x)Yn(y) = Cn

(
enπx/L − e2nπe−nπx/L

)
sin

nπy

L
= Cne

nπ
[
e−nπ(1−x/L) − enπ(1−x/L)

]
sin

nπy

L

= Bn

[
e−nπ(1−x/L) − enπ(1−x/L)

]
sin

nπy

L
.

Because the PDE and the first, second and fourth boundary conditions are linear and homogeneous,
we superpose separated functions and take

V (x, y) =
∞∑

n=1

Bn

[
e−nπ(1−x/L) − enπ(1−x/L)

]
sin

nπy

L
.

The nonhomogeneous boundary condition requires

1 =
∞∑

n=1

Bn(e−nπ − enπ) sin
nπy

L
.

This implies that Bn(e−nπ − enπ) are coefficients in the eigenfunction expansion of the function
f(y) = 1; that is,

Bn(e−nπ − enπ) = 2
∫ 1

0

sin
nπy

L
dy =

2
nπ

[1 + (−1)n+1].

Thus,

V (x, y) =
∞∑

n=1

2[1 + (−1)n+1]
nπ(e−nπ − enπ)

[
e−nπ(1−x/L) − enπ(1−x/L)

]
sin

nπy

L

=
4
π

∞∑

n=1

1
(2n− 1)[e−(2n−1)π − e(2n−1)π]

[
e−(2n−1)π(1−x/L) − e(2n−1)π(1−x/L)

]
sin

(2n− 1)πy
L

.



12 8. The nonhomogeneous initial, boundary-value problem

∂U

∂t
= k

∂2U

∂x2
+ x, 0 < x < L, t > 0,

U(0, t) = U0, t > 0, (U0 a constant)
Ux(L, t) = Q, t > 0, (Q a constant)
U(x, 0) = f(x), 0 < x < L,

can be solved by splitting U(x, t) into two parts

U(x, t) = z(x, t) + ψ(x).

Find ψ(x) and the initial boundary value problem for z(x, t). Do NOT attempt to find z(x, t).

ψ(x) must satisfy

0 = k
d2ψ

dx2
+ x, ψ(0) = U0, ψ′(L) = Q.

A general solution of the differential equation is ψ(x) = −x
3

6k
+Ax+B. The boundary conditions

require

B = U0, Q = −L
2

2k
+A.

Thus, ψ(x) = −x
3

6k
+

(
Q+

L2

2k

)
x+ U0. The initial boundary problem for z(x, t) is

∂z

∂t
= k

∂2z

∂x2
, 0 < x < L, t > 0,

z(0, t) = 0, t > 0,
zx(L, t) = 0, t > 0,
z(x, 0) = f(x) − ψ(x), 0 < x < L.


