
Sturm-Liouville Systems Associated With the Differential Equation
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Theorem Let p, q, r, r′, and (pr)′′ be real and continuous func-
tions of x for a ≤ x ≤ b, and let p > 0 and r > 0 for a ≤ x ≤ b. Let
l1, l2, h1, and h2 be real constants independent of λ. Then Sturm-
Liouville system 19.1 has an infinity of eigenvalues λ1 < λ2 < λ3 <
· · · (all real), not more than a finite number of which are negative,
and limn→∞ λn = ∞. If f(x) is piecewise smooth on a ≤ x ≤ b,
then for any x in a < x < b,

f(x+) + f(x−)
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p(x)[yn(x)]2dx.
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