Sample Test 3 MATH3132

Time: 60 Minutes

1. Determine whether the functions $f(x)=x^{3}-4$ and $g(x)=x$ are orthogonal with respect to the weight function $w(x)=x$ on the intervals (a) $0 \leq x \leq 1$ and (b) $0 \leq x \leq 2$.

Answer: (a) Not orthogonal (b) Orthogonal
2. (a) Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{ll}
4, & 0<x<2 \\
0, & 2<x<4
\end{array} \quad f(-x)=f(x), \quad f(x+8)=f(x) .\right.
$$

Simplify the series as much as possible.
(b) On the interval - $8 \leq x \leq 8$, draw graphs of $f(x)$ and the function to which the Fourier series converges.
(c) Use your Fourier series to find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}$.

Answer:
(a) $2+\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1} \cos \frac{(2 n-1) \pi x}{4}$
(b)

(c) $\pi / 4$
3. Find eigenvalues and eigenfunctions of the Sturm-Liouville system

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+\lambda y & =0, \quad 0<x<L, \\
y(0) & =0, \\
y(L) & =0 .
\end{aligned}
$$

You may assume that all eigenvalues are greater than 1. Bonus: What is the weight function for the system?

Answer: $\quad \lambda_{n}=1+n^{2} \pi^{2} / L^{2}$, where $n \geq 1$ is an integer $\quad y_{n}(x)=e^{-x} \sin \frac{n \pi x}{L} \quad w(x)=e^{2 x}$
4. A rod with length 8 and thermal diffusivity 3 has insulated sides. It lies along the x-axis from $x=0$ to $x=8$. Initially, the temperature of its left end is $50^{\circ} \mathrm{C}$ and that of its right end is $100^{\circ} \mathrm{C}$, and it rises linearly between the ends. The right end continues to be held at temperature $100^{\circ} \mathrm{C}$, but its left end is insulated. Write down the partial differential equation satisfied by the temperature $U(x, t)$ at points in the rod and all boundary and initial conditions satisfied by $U(x, t)$. Include intervals on which each of these must be satisfied.

Answer:

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =3 \frac{\partial^{2} U}{\partial x^{2}}, \quad 0<x<8, \quad t>0, \\
U_{x}(0, t) & =0, \quad t>0, \\
U(L, t) & =100, \quad t>0, \\
U(x, 0) & =50+25 x / 4, \quad 0<x<L .
\end{aligned}
$$

