6 1. Let R be the shaded region of the $x y$-plane shown in the figure to the right.
(a) Find an algebraic expression describing the region.
(b) State whether the region is an open set, a closed set, a connected set, a domain, and a simply-connected domain.
(a) $0<(x-4)^{2}+y^{2}<4$
(b) The region is open, not closed, connected,
a domain, but not a simply-connected domain.

5 2. Let D be a simply-connected domain. Prove that if the line integral

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

around every closed curve in D, then the line integral is independent of path in D.
Let A and B be any two points in D, and let C_{1} and C_{2} be any two curves in D joining A to B. Since $C_{1}-C_{2}$ is a closed curve, we can write that

$$
\begin{aligned}
& 0=\int_{C_{1}-C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{-C_{2}} \mathbf{F} \cdot d \mathbf{r} \\
& \quad=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
\end{aligned}
$$

This implies that

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

and therefore the line intgral is independent of path in D.

8 3. Set up, but do NOT evaluate, a definite integral for the value of the line integral

$$
\int_{C}\left(x^{2}+y z\right) d s
$$

where C is the curve $x=y^{2}+1, z=x^{2}$ from the point $(10,3,100)$ to the point $(2,1,4)$. It is not necessary for you to simplify the integrand.

Since parametric equations for the curve are $x=t^{2}+1, \quad y=-t, \quad z=\left(t^{2}+1\right)^{2}, \quad-3 \leq t \leq-1$,

$$
\begin{aligned}
\int_{C}\left(x^{2}+y z\right) d s & =\int_{-3}^{-1}\left[\left(t^{2}+1\right)^{2}-t\left(t^{2}+1\right)^{2}\right] \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{-3}^{-1}\left[\left(t^{2}+1\right)^{2}-t\left(t^{2}+1\right)^{2}\right] \sqrt{(2 t)^{2}+(-1)^{2}+\left[4 t\left(t^{2}+1\right)\right]^{2}} d t
\end{aligned}
$$

4. Evaluate the line integral

$$
\oint_{C}-x^{2} y d x+x y^{2} d y
$$

once around the curve $x^{2}+y^{2}=4$.
By Green's theorem,

$$
\begin{aligned}
\oiint_{C}-x^{2} y d x+x y^{2} d y & =-\iint_{R}\left(y^{2}+x^{2}\right) d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{2}\left(r^{2}\right) r d r d \theta \\
& =-\int_{0}^{2 \pi}\left\{\frac{r^{4}}{4}\right\}_{0}^{2} d \theta=-4\{\theta\}_{0}^{2 \pi}=-8 \pi
\end{aligned}
$$

9 5. Set up, but do NOT evaluate, a double iterated integral for the value of the surface integral

$$
\iint_{S}(2 x y-z) d S
$$

where S is that part of the surface $z=10-x^{2}-y^{2}$ above the plane $z=1$.

$$
\begin{aligned}
\iint_{S}(2 x y-z) d S & =\iint_{S_{x y}}(2 x y-z) \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A \\
& =\iint_{S_{x y}}(2 x y-z) \sqrt{1+(-2 x)^{2}+(-2 y)^{2}} d A \\
& =\iint_{S_{x y}}\left(2 x y-10+x^{2}+y^{2}\right) \sqrt{1+4 x^{2}+4 y^{2}} d A \\
& =\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}}\left(2 x y-10+x^{2}+y^{2}\right) \sqrt{1+4 x^{2}+4 y^{2}} d y d x
\end{aligned}
$$

or,

$$
\int_{0}^{2 \pi} \int_{0}^{3}\left(2 r^{2} \cos \theta \sin \theta-10+r^{2}\right) \sqrt{1+4 r^{2}} r d r d \theta
$$

