Midterm Examination #1 Math 3132 Engineering Mathematical Analysis 3 October 8,

8 1. Evaluate the line integral
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where C is the curve y = 2z, z + 2% = 2 from the point (2,4, —2) to the point (—1,—2,1).

With parametric equations © = —t, y = —2t, 2 =2 —t2, =2 <t < 1,
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8 2. Evaluate the line integral
SZS (23y* — 3x) dx + (ysinz — z) dy,
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where C is the curve bounding the area enclosed by the curves y = 1 — 22, y = 22 — 1.

Using Green’s Theorem,
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10 3. Set up, but do NOT evaluate, a double iterated integral for the value of the surface integral
// ($2,Zzi +yzj — :El;) -ndsS,
s

where S is the smaller part of 22 4+ 42 + 22 = 4 in the first octant cut out be the plane y = 2z, and
n is the unit upper normal to S.

Let S;, be the projection of the
surface onto the xy-plane. A normal
to the surface is (2z,2y,2z2), and
(x7 y? Z)
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14 4. Evaluate the line integral
¢ (2% —y)dz — (y + z2%) dy + 2% dz,
c

where C is the curve 22 4+ y? = 1, y + z = 1, directed counterclockwise as viewed from the origin.

Let us choose S as that part of the plane
y+z=1inside C. If R
F = (2? — y)i — (y + 22?)j + 27k, then
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Stokes’s Theorem gives
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