Midterm Examination \#2 MATH3132 Mathematical Methods for Engineers 3

Time: 60 Minutes

Student Name (Print):

\qquad

Student Signature:

Student Number:

INSTRUCTIONS:

1. No aids permitted.
2. Check that your examination has 3 questions.

6 1. Find all singular points for the differential equation

$$
x^{2}(x-1) \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+x y=0
$$

and determine whether they are regular or irregular singular points. Justify your answers.

Consider the functions

$$
\frac{3}{x^{2}(x-1)} \quad \text { and } \quad \frac{x}{x^{2}(x-1)}=\frac{1}{x(x-1)} .
$$

Since neither of these functions has a Maclaurin series nor a Taylor series about $x=1$, the points $x=0$ and $x=1$ are singular. To determine whether $x=0$ is regular or irregular singular, consider the functions

$$
\frac{3 x}{x^{2}(x-1)}=\frac{3}{x(x-1)} \quad \text { and } \quad \frac{x^{2}}{x(x-1)}=\frac{x}{x-1} .
$$

Since the first of these does not have a Maclaurin series, $x=0$ is irregular singular. To discuss $x=1$, consider

$$
\frac{3(x-1)}{x^{2}(x-1)}=\frac{3}{x^{2}} \quad \text { and } \quad \frac{(x-1)^{2}}{x(x-1)}=\frac{x-1}{x} .
$$

Since both of these functions have Taylor series about $x=1, x=1$ is regular singular.
2. Evaluate the surface integral

$$
\oiint_{S}\left[x^{2} z \hat{\mathbf{i}}+y^{3} \hat{\mathbf{j}}+\left(x y+3 x^{2} z\right) \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S
$$

where S is the surface surrounding the volume bounded by the surfaces $x^{2}+y^{2}=4, z=0$ and $z=3$, and $\hat{\mathbf{n}}$ is the unit inward normal to the surface.

If V is the volume enclosed by the surface, then the divergence theorem says that

$$
\oiint_{S}\left[x^{2} z \hat{\mathbf{i}}+y^{3} \hat{\mathbf{j}}+\left(x y+3 x^{2} z\right) \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S=-\iiint_{V}\left(2 x z+3 y^{2}+3 x^{2}\right) d V .
$$

Since the function $2 x z$ is an odd function of x, and V is symmetric about the $y z$-plane, it integrates to zero. When we use cylindrical coordinates on the remaining terms,

$$
\begin{aligned}
\oiint_{S}\left[x^{2} z \hat{\mathbf{i}}+y^{3} \hat{\mathbf{j}}+\left(x y+3 x^{2} z\right) \hat{\mathbf{k}}\right] \cdot \hat{\mathbf{n}} d S & =-3 \int_{-\pi}^{\pi} \int_{0}^{2} \int_{0}^{3} r^{3} d z d r d \theta \\
& =-3 \int_{-\pi}^{\pi} \int_{0}^{2}\left\{r^{3} z\right\}_{0}^{3} d r d \theta=-9 \int_{-\pi}^{\pi} \int_{0}^{2} r^{3} d r d \theta \\
& =-9 \int_{-\pi}^{\pi}\left\{\frac{r^{4}}{4}\right\}_{0}^{2} d \theta=-36 \int_{-\pi}^{\pi} d \theta=-36\{\theta\}_{-\pi}^{\pi}=-72 \pi
\end{aligned}
$$

Student Number

\qquad
3. (a) Find the Maclaurin series solution of the differential equation

$$
\left(1+4 x^{2}\right) \frac{d^{2} y}{d x^{2}}-8 y=0
$$

(b) Is your solution a general one? Give reasons why you should expect this.
(c) Use the formula

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

to find the radius of convergence of any series in your answer to part (a). Is this what should be expected? Explain.
(a) If we assume a Maclaurin series solution $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ with positive radius of convergence, then

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} 4 n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty}-8 a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} 4 n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty}-8 a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+4 n(n-1) a_{n}-8 a_{n}\right] x^{n} .
\end{aligned}
$$

When we equate coefficients to zero, we obtain

$$
(n+2)(n+1) a_{n+2}+4 n(n-1) a_{n}-8 a_{n}=0
$$

from which

$$
a_{n+2}=-\frac{4 n(n-1)-8}{(n+2)(n+1)} a_{n}=-\frac{4\left(n^{2}-n-2\right)}{(n+2)(n+1)} a_{n}=-\frac{4(n-2)(n+1)}{(n+2)(n+1)}=-\frac{4(n-2)}{n+2} a_{n}, \quad n \geq 0 .
$$

For $n=0: \quad a_{2}=\frac{4 \cdot 2}{2} a_{0}$.
For $n=2: \quad a_{4}=0$ and therefore $a_{6}=a_{8}=\cdots=0$.
For $n=1: \quad a_{3}=\frac{4(1)}{3} a_{1}$.
For $n=3: \quad a_{5}=-\frac{4}{5} a_{3}=-\frac{4^{2}}{3 \cdot 5} a_{1}$.
For $n=5: \quad a_{7}=-\frac{4(3)}{7} a_{5}=\frac{4^{3} \cdot 3}{3 \cdot 5 \cdot 7} a_{1}$.
For $n=7: \quad a_{9}=-\frac{4(5)}{9} a_{7}=-\frac{4^{4} \cdot 3 \cdot 5}{3 \cdot 5 \cdot 7 \cdot 9} a_{1}$.
The solution is

$$
y(x)=a_{0}+4 a_{0} x^{2}+a_{1}\left[x+\frac{4}{3} x^{3}-\frac{4^{2}}{3 \cdot 5} x^{5}+\frac{4^{3} \cdot 3}{3 \cdot 5 \cdot 7} x^{7}-\frac{4^{4} \cdot 3 \cdot 5}{3 \cdot 5 \cdot 7 \cdot 9} x^{9}+\cdots\right]
$$

$$
\begin{aligned}
& =a_{0}\left(1+4 x^{2}\right)+a_{1}\left[x+\frac{4}{3} x^{3}-\frac{4^{2}}{3 \cdot 5} x^{5}+\frac{4^{3}}{5 \cdot 7} x^{7}-\frac{4^{4}}{7 \cdot 9} x^{9}+\cdots\right] \\
& =a_{0}\left(1+4 x^{2}\right)+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{n}}{(2 n-1)(2 n+1)} x^{2 n+1}
\end{aligned}
$$

(b) Since the solution has two arbitrary constants, it is a general solution. We should expect this because $x=0$ is an ordinary point.
(c) If we set $z=x^{2}$, the series in part (a) becomes

$$
x \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{n}}{(2 n-1)(2 n+1)} z^{n}
$$

The radius of convergence of the series is

$$
R_{z}=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} 4^{n}}{(2 n-1)(2 n+1)}}{\frac{(-1)^{n+2} 4^{n+1}}{(2 n+1)(2 n+3)}}\right|=\frac{1}{4} .
$$

Hence $R_{x}=1 / 2$. Singularities of the differential equation are $x= \pm i / 2$. The distance from $x=0$ to each of these is $1 / 2$, and this should be the radius of convergence.

