Midterm Examination #3 Solutions

1. (a) Find the Fourier series for the function in the figure below (simplified as much as possible).

(b) Draw a graph of the function to which the Fourier series in part (a) converges.

(a) Since the function is odd, its Fourier series will be a sine series
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The Fourier sine series is therefore
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2. A general solution of the differential equation
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is known to be
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y(z) = C1 cos Vz + (5 sin NoY:
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, if A>0.

Do NOT show this. Use it to find eigenvalues and eigenfunctions of the Sturm-Liouville system
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y(1) =0.

Instead of a boundary condition at = 0, impose the condition that

lim y(x) must exist.
Jim y(z)

Assume that all eigenvalues of the system are nonnegative and consider the two cases A = 0 and
A>0.

Consider first the case that A = 0. If the limit lim,_ o+ y(z) is to exist, then C; must be set equal
to zero. The condition y(1) = 0 then implies that 0 = C5. Thus, A = 0 cannot be an eigenvalue.
Consider now the case that A > 0. If the limit lim, o+ y(z) is to exist, then C; must again be set
equal to zero. The condition y(1) = 0 then implies that

CosinVA=0 = VA=nm, n#0 an integer.
Eigenvalues are therefore \,, = n?n2, where n > 1. Corresponding eigenfunctions are y,(z) =
(Cy/zx)sinnrmz.



3. Find the eigenfunction expansion of the function f(z) = 3z, 0 < x < L, in terms of the eigenfunc-
tions of the Sturm-Liouville system
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Simplify coefficients as much as possible.
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4. A string with linear density p is stretched tightly between the points x = 0 and z = L on the
z-axis. The tension in the string is a constant 7. The displacement of the string at time ¢t = 0 is
shown in the figure below, and from this position, it is released. The left end of the string is fixed
on the z-axis, but the right end is looped around a vertical rod, and can move vertically without
friction. If gravity is taken into account, as well as a damping force proportional to velocity, what
is the initial-value problem for displacement y(z,t) of the string? Include the partial differential
equation, and all boundary and initial conditions, and include intervals on which they must be
satisfied.
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The initial boundary vavlue problem is

2 2
%_02%_9_5%, O<z<L, t>0,
y(0,t) =0, t>0,
y.(L,t) =0, t>0,
y(z,0) = f(z), 0<ax<L,
Ye(2,0) =0, 0<z <L,

x/25, 0<z<L/2
(L—x)/25, L/2<x< L.

5. For what value of k are the functions  and 1 — 2kx? orthogonal on the interval 0 < z < 1 with
respect to the weight function w(x) = z?

For orthogonality we must have
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Thus, k = 5/6.



