Midterm Examination \#3 MATH3132 Mathematical Methods for Engineers 3
14

1. (a) Find the Fourier series for the function

$$
f(x)=3|x|, \quad-2 \leq x \leq 2, \quad f(x+4)=f(x)
$$

Simplify the series as much as possible.
(b) Use the Fourier series in part (a) to find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(a) Since the function is even, its Fourier series will be a Fourier cosine series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{2}
$$

where $a_{n}=\frac{2}{2} \int_{0}^{2} 3 x \cos \frac{n \pi x}{2} d x$. We find

$$
a_{0}=3 \int_{0}^{2} x d x=3\left\{\frac{x^{2}}{2}\right\}_{0}^{2}=6
$$

and for $n \geq 1$,

$$
\begin{aligned}
a_{n} & =3 \int_{0}^{2} x \cos \frac{n \pi x}{2} d x=3\left\{\frac{2 x}{n \pi} \sin \frac{n \pi x}{2}\right\}_{0}^{2}-3 \int_{0}^{2} \frac{2}{n \pi} \sin \frac{n \pi x}{2} d x \\
& =-\frac{6}{n \pi}\left\{\frac{-2}{n \pi} \cos \frac{n \pi x}{2}\right\}_{0}^{2}=\frac{12}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] .
\end{aligned}
$$

The Fourier cosine series is

$$
3+\sum_{n=1}^{\infty} \frac{12}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] \cos \frac{n \pi x}{2}=3-\frac{24}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{2} .
$$

(b) Since the series converges to 0 at $x=0$, we can write that

$$
0=3-\frac{24}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \quad \Longrightarrow \quad \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{3 \pi^{2}}{24}=\frac{\pi^{2}}{8} .
$$

2. The function in the first graph below is to be extended as a periodic function with period 2 . Suppose that the Fourier series of this extension is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \pi x+b_{n} \sin n \pi x\right) .
$$

On the second set of axes, draw a graph of the function to which the Fourier series converges on the interval $-3 \leq x \leq 3$.

6 3. The function $f(x)=x e^{-3 x}, 0 \leq x \leq 4$, is to be expressed in terms of the eigenfunctions of the Sturm-Liouville system

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+\lambda y & =0, \quad 0<x<4, \\
y^{\prime}(0) & =0, \\
y(4) & =0 .
\end{aligned}
$$

(a) What is the form of the eigenfunction expansion? You may use the table on page 1 to determine eigenfunctions of the system.
(b) What integral defines the coefficients in the eigenfunction expansion? Do NOT evaluate the integral.
(a) Eigenfunctions of the Sturm-Liouville system are $y_{n}(x)=\cos \frac{(2 n-1) \pi x}{8}$. The eigenfunction expansion of $f(x)$ is

$$
f(x)=x e^{-3 x}=\sum_{n=1}^{\infty} C_{n} \cos \frac{(2 n-1) \pi x}{8}
$$

(b) Coefficients are given by

$$
C_{n}=\frac{2}{4} \int_{0}^{4} x e^{-3 x} \cos \frac{(2 n-1) \pi x}{8} d x .
$$

4. (a) Find eigenvalues and eigenfunctions of the Sturm-Liouville system

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+\lambda y & =0, \quad 0<x<1, \\
y(0) & =0 \\
y(1) & =0
\end{aligned}
$$

You may assume that eigenvalues are greater than 1.
(b) What is the weight function for the system?
(a) The auxiliary equation is

$$
m^{2}-2 m+\lambda=0 \quad \Longrightarrow \quad m=\frac{2 \pm \sqrt{4-4 \lambda}}{2}=1 \pm \sqrt{1-\lambda} .
$$

Since $\lambda>1$, we write that

$$
m=1 \pm \sqrt{\lambda-1} i=1 \pm \omega i, \quad \text { where } \omega=\sqrt{\lambda-1}
$$

The general solution of the differential equation is

$$
y(x)=e^{x}\left(C_{1} \cos \omega x+C_{2} \sin \omega x\right) .
$$

For $y(0)=0$,

$$
0=e^{0}\left(C_{1}\right)=C_{1} .
$$

For $y(1)=0$,

$$
0=e^{1}\left(C_{1} \cos \omega+C_{2} \sin \omega\right)=C_{2} e \sin \omega .
$$

Since we cannot set $C_{2}=0$, we must set

$$
\sin \omega=0 \quad \Longrightarrow \omega=n \pi, \quad n \text { an integer. }
$$

Thus, $n \pi=\sqrt{\lambda-1}$, from which $\lambda_{n}=1+n^{2} \pi^{2}, n \geq 1$, are the eigenvalues. Eigenfunctions are

$$
y_{n}(x)=C_{2} e^{x} \sin n \pi x .
$$

(b) An integrating factor is $e^{\int-2 d x}=e^{-2 x}$. When we multiply each term in the differential equation by this factor, we obtain

$$
e^{-2 x} \frac{d^{2} y}{d x^{2}}-2 e^{-2 x} \frac{d y}{d x}+\lambda y e^{-2 x}=0
$$

or,

$$
\frac{d}{d x}\left(e^{-2 x} \frac{d y}{d x}\right)+\lambda e^{-2 x} y=0
$$

This shows that the weight function is $e^{-2 x}$.

