Midterm Examination #3 MATH3132 Mathematical Methods for Engineers 3

14 1. (a) Find the Fourier series for the function
fo) =3, —2<w<2 flatd)=f)

Simplify the series as much as possible.
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(a) Since the function is even, its Fourier series will be a Fourier cosine series
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and for n > 1,
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The Fourier cosine series is
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(b) Since the series converges to 0 at z = 0, we can write that
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6 2. The function in the first graph below is to be extended as a periodic function with period 2.
Suppose that the Fourier series of this extension is

% + Z (an cosnmz + by, sinnwz).

n=1

On the second set of axes, draw a graph of the function to which the Fourier series converges on
the interval —3 < z < 3.
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3. The function f(z) = ze™3%, 0 < z < 4, is to be expressed in terms of the eigenfunctions of the

Sturm-Liouville system

d*y

WjL)\y:O, 0<zx<4,
y'(O) =0,
y(4) = 0.

(a) What is the form of the eigenfunction expansion? You may use the table on page 1 to determine
eigenfunctions of the system.

(b) What integral defines the coefficients in the eigenfunction expansion? Do NOT evaluate the
integral.

(2n — 1)mx

(a) Eigenfunctions of the Sturm-Liouville system are v, () = cos . The eigenfunction

expansion of f(x) is
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(b) Coefficients are given by
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4. (a) Find eigenvalues and eigenfunctions of the Sturm-Liouville system

P’y dy
Z 2 _ 9% — 1
72 da;+>\y 0, 0<z<1,
y(0) =0,
y(1) = 0.

You may assume that eigenvalues are greater than 1.

(b) What is the weight function for the system?

(a) The auxiliary equation is

m2—mA4A=0 — -2 VETAA V;l_M:lim.
Since A > 1, we write that
m=1+vVA—1i=1=uwi, where w = VA — 1.
The general solution of the differential equation is
y(x) = e*(C} coswz + Cy sinw).
For y(0) =0,
0=2e"Cy) =0

For y(1) =0,

0 = e'(Cy cosw + Oy sinw) = Coesinw.
Since we cannot set Cy = 0, we must set

sinw =0 = w=mnm, n an integer.
Thus, nm = VA — 1, from which A, = 1 +n?72, n > 1, are the eigenvalues. Eigenfunctions are

yn(x) = Coe” sinnmx.

(b) An integrating factor is ef “20 _ =22 When we multiply each term in the differential equa-
tion by this factor, we obtain

d*y dy
—2x -9 —2x —2z _
e e + Aye 0,
or,
d e -2
— r= Ae Ty = 0.
dz (e d:c) TAe Ty

This shows that the weight function is e=2*.



