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§21.3 Nonhomogeneities

In Section 21.2 we stressed the fact that separation of variables is carried out on linear,
homogeneous PDEs and linear, homogeneous boundary and/or initial conditions. Sepa-
rated functions are superposed in order to satisfy nonhomogeneous initial conditions. When
nonhomogeneities are present in the PDE, or in the boundary conditions of time-dependent
problems, separation by itself fails. To illustrate, reconsider vibration problem 21.9 for
displacement of a taut string with fixed end points, but with gravity taken into account:

∂2y

∂t2
= c2

∂2y

∂x2
− g, 0 < x < L, t > 0, (g = 9.81), (21.33a)

y(0, t) = 0, t > 0, (21.33b)
y(L, t) = 0, t > 0, (21.33c)
y(x, 0) = f(x), 0 < x < L, (21.33d)
yt(x, 0) = 0, 0 < x < L. (21.33e)

Only the partial differential equation is affected; it is nonhomogeneous. The boundary
conditions remain homogeneous. Substitution of a separated function y(x, t) = X(x)T (t)
into PDE 21.33a gives

XT ′′ = c2X ′′T − g.

Our usual procedure of dividing by X(x)T (t) would not lead to a separated equation; in
fact, this equation cannot be separated. Likewise, were boundary condition 21.33b not
homogeneous, say y(0, t) = f(t), in which case the left end of the string would be forced to
undergo specific motion, substitution of y(x, t) = X(x)T (t) would not lead to information
about X(x) and T (t) separately.

In this section we illustrate one of two methods for handling nonhomogeneities. The
method uses steady-state solutions for heat conduction problems and static deflections for
vibration problems. It applies, however, only to time-independent nonhomogeneities. The
other method handles time-dependent nonhomogeneities, but it is a much more involved
procedure.

Time-Independent Nonhomogeneities

Partial differential equation 21.33a has a time-independent nonhomogeneity (it is also inde-
pendent of x, but that is immaterial). To solve this problem, we define a new dependent
variable z(x, t) according to

y(x, t) = z(x, t) + ψ(x), (21.34)

where ψ(x) is the solution of the corresponding static-deflection problem

0 = c2
d2ψ

dx2
− g, 0 < x < L, (21.35a)

ψ(0) = 0, ψ(L) = 0. (21.35b)

It is obtained from problem 21.33 by removing all time dependence and calling the solution
ψ(x) rather than y(x). Its solution, called the static deflection solution, is the shape of
the string were it to lie motionless under the influence of its internal tension and gravity.
Differential equation 21.35a implies that

ψ(x) =
gx2

2c2
+Ax+B,

and boundary conditions 21.35b require
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0 = B, 0 =
gL2

2c2
+AL+B.

From these we obtain the position of the string were it to hang motionless under gravity:

ψ(x) =
gx

2c2
(x− L). (21.36)

We expect that the string will vibrate about this position and that z(x, t) represents dis-
placements from this position. A PDE satisfied by z(x, t) can be found by substituting
representation 21.34 into PDE 21.33a:

∂2

∂t2
[z(x, t) + ψ(x)] = c2

∂2

∂x2
[z(x, t) + ψ(x)] − g.

This equation simplifies to the following homogeneous PDE when we note that ψ(x) is only
a function of x that satisfies ODE 21.35a:

∂2z

∂t2
= c2

∂2z

∂x2
, 0 < x < L, t > 0. (21.37a)

Boundary conditions for z(x, t) are obtained by setting x = 0 and x = L in representation
21.34 and using boundary conditions 21.33b,c for y(x, t):

z(0, t) = y(0, t) − ψ(0) = 0, t > 0, (21.37b)
z(L, t) = y(L, t) − ψ(L) = 0, t > 0. (21.37c)

Finally, by setting t = 0 in 21.34 and its partial derivative with respect to t, and using initial
conditions 21.33d,e for y(x, t), we obtain initial conditions for z(x, t):

z(x, 0) = y(x, 0) − ψ(x) = f(x) +
gx

2c2
(L− x), 0 < x < L, (21.37d)

zt(x, 0) = yt(x, 0) = 0, 0 < x < L. (21.37e)

We have therefore replaced problem 21.33, which has a nonhomogeneous PDE, with problem
21.37, which has a homogeneous PDE. We have complicated one of the initial conditions,
but this is a small price to pay. If a function z(x, t) = X(x)T (t) with variables separated
is to satisfy PDE 21.37a, boundary conditions 21.37b,c, and initial condition 21.37e, then
X(x) and T (t) separately satisfy

X ′′ + λX = 0, 0 < x < L,

X(0) = 0 = X(L);
T ′′ + λc2T = 0, t > 0,

T ′(0) = 0.

The Sturm-Liouville system was discussed in Section 19.2. According to line 1 of Ta-
ble 19.1, eigenvalues are λn = n2π2/L2 and corresponding eigenfunctions are Xn(x) =
sin (nπx/L). Since the auxiliary equation for the differential equation in T (t) is m2+c2λn =
0, with solution m = ±c

√
λni = ±nπci/L, a general solution of the differential equation

is T (t) = A cos
nπct

L
+B sin

nπct

L
. The condition T ′(0) = 0 requires B = 0. Separated

functions are therefore b cos
nπct

L
sin

nπx

L
. Because PDE 21.37a and conditions 21.37b,c,e

are linear and homogeneous, we superpose these functions and take

z(x, t) =
∞∑

n=1

bn sin
nπx

L
cos

nπct

L
. (21.38)

Initial condition 21.37d requires the constants bn to satisfy

f(x) +
gx

2c2
(L− x) =

∞∑

n=1

bn sin
nπx

L
, 0 < x < L.
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Consequently, the bn are coefficients in the Fourier sine series of the odd extension of f(x)+
gx(L− x)/(2c2) to a function of period 2L; that is,

bn =
2
L

∫ L

0

[
f(x) +

gx

2c2
(L− x)

]
sin

nπx

L
dx. (21.39)

The formal solution of vibration problem 21.33 is therefore

y(x, t) =
gx

2c2
(x− L) +

∞∑

n=1

bn sin
nπx

L
cos

nπct

L
, (21.40)

where the bn are given by the integral in equation 21.39.
This technique of spliting off static deflections can be applied to any nonhomogeneity

that is only a function of position, be it in the PDE or in a boundary condition. We illustrate
nonhomogeneities in boundary conditions in the next example.

Example 21.4 Solve the initial boundary value problem for temperature in a homogeneous, isotropic rod
with insulated sides when the ends of the rod are held at constant temperatures,

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (21.41a)

U(0, t) = U0, t > 0, (21.41b)
U(L, t) = UL, t > 0, (21.41c)
U(x, 0) = f(x), 0 < x < L. (21.41d)

Solution We define a new dependent variable V (x, t) by

U(x, t) = V (x, t) + ψ(x), (21.42)

where ψ(x) is the solution of the associated steady-state problem

0 = k
d2ψ

dx2
, 0 < x < L, (21.43a)

ψ(0) = U0, (21.43b)
ψ(L) = UL. (21.43c)

It is obtained from problem 21.41 by removing all time dependence and calling the solution
ψ(x) rather than U(x). Its solution, called the steady-state solution, is anticipated to be
the temperature in the rod after a very long time. Differential equation 21.43a implies that
ψ(x) = Ax +B, and boundary conditions 21.43b,c require

U0 = B, UL = AL+B.

From these, we obtain the steady-state solution

ψ(x) = U0 +
(UL − U0)x

L
. (21.44)

With this choice for ψ(x), the PDE for V (x, t) can be found by substituting representation
21.42 into 21.41a:

∂

∂t
[V (x, t) + ψ(x)] = k

∂2

∂x2
[V (x, t) + ψ(x)].

Because ψ(x) is only a function of x that has a vanishing second derivative, this equation
simplifies to

∂V

∂t
= k

∂2V

∂x2
, 0 < x < L, t > 0. (21.45a)
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Boundary conditions for V (x, t) are obtained from representation 21.42 and boundary con-
ditions 21.41b,c for U(x, t):

V (0, t) = U(0, t) − ψ(0) = U0 − U0 = 0, t > 0, (21.45b)
V (L, t) = U(L, t) − ψ(L) = UL − UL = 0, t > 0. (21.45c)

Finally, V (x, t) must satisfy the initial condition

V (x, 0) = U(x, 0) − ψ(x) = f(x) − U0 −
(UL − U0)x

L
, 0 < x < L. (21.45d)

Separation of variables V (x, t) = X(x)T (t) on 21.45a,b,c leads to the ordinary differential
equations

X ′′ + λX = 0, 0 < x < L, (21.46a)
X(0) = X(L) = 0; (21.46b)

T ′ + kλT = 0, t > 0. (21.47)

The Sturm-Liouville system was discussed in Section 19.2. According to line 1 of Table 19.1,
eigenvalues are λn = n2π2/L2 and corresponding eigenfunctions are Xn(x) = sin (nπx/L).
Since the auxiliary equation for the differential equation in T (t) is m+kλn = 0, with solution
m = −kλn, a general solution of the differential equation is T (t) = be−kλnt = be−n2π2kt/L2

.
Separated functions are be−n2π2kt/L2

sin
nπx

L
. Because the PDE and boundary conditions

are linear and homogeneous, we superpose separated functions in the form

V (x, t) =
∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
. (21.48)

Initial condition 21.45d requires the constants bn to satisfy

f(x) − U0 −
(UL − U0)x

L
=

∞∑

n=1

bn sin
nπx

L
, 0 < x < L.

Consequently, the bn are the coefficients in the Fourier sine series of the odd extension of
f(x) − U0 − (UL − U0)x/L to a function of period 2L:

bn =
2
L

∫ L

0

[
f(x) − U0 −

(UL − U0)x
L

]
sin

nπx

L
dx. (21.49)

The formal solution of problem 21.41 is therefore

U(x, t) = V (x, t) + U0 +
(UL − U0)x

L
, (21.50)

where V (x, t) is given by the series in 21.48 and bn by the integral in 21.49. Function V (x, t)
represents the transient part of the temperature function, which, because of the exponential
factor e−n2π2kt/L2

, decreases with time. Temperature approaches the steady-state solution.•
It is interesting and informative to analyze solution 21.50 further for two specific initial

temperature distributions f(x). First, suppose that the initial temperature of the rod is 0◦C
throughout; that is, f(x) ≡ 0. In this case, equations 21.48–21.50 yield, for the temperature
in the rod,

U(x, t) = U0 +
(UL − U0)x

L
+

∞∑

n=1

bne
−n2π2kt/L2

sin
nπx

L
,

where

bn =
2
L

∫ L

0

[
−U0 − (UL − U0)

x

L

]
sin

nπx

L
dx =

−2
nπ

[U0 + (−1)n+1UL].
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This function is plotted for various fixed values of t in Figure 21.12 (using a diffusivity of
k = 12.4 × 10−6 m2/s). What is important to notice is the smooth transition from initial
temperature 0◦C to final steady-state temperature at every point in the rod except for its
ends x = 0 and x = L. Here the transition is instantaneous, as is dictated by problem
21.41 when f(x) is chosen to vanish identically. Physically, this is an impossibility, but the
mathematics required to describe a very quick but smooth change in temperature from 0◦C
at x = 0 and x = L to U0 and UL would complicate the problem enormously. In practice,
then, we are willing to live with the anomaly of the solution at time t = 0 for x = 0 and
x = L in order to avoid these added complications. This anomaly is manifested in the heat
transfer across the ends of the rod at time t = 0. According to equation 20.1 in Section
20.1, the amount of heat flowing left to right through any cross section of the rod is

q(x, t) = −κ∂U
∂x

= −κ

(
UL − U0

L
+
π

L

∞∑

n=1

nbne
−n2π2kt/L2

cos
nπx

L

)

=
κ

L

{
U0 − UL + 2

∞∑

n=1

[U0 + (−1)n+1UL]e−n2π2kt/L2
cos

nπx

L

}
.

The series in this expression diverges (to infinity) when x = 0 at t = 0. In other words,
the instantaneous temperature change at time t = 0 from 0◦C to U0

◦C is predicated on an
infinite heat flux at that time. A similar situation occurs at the end x = L.

y

xL

UL

U

U x( ,60 000)

0

U x( ,6000)

U x( ,600) U x( ,60)

U x( ,0)

L
2

y

L

UL

U0

U x( ,60 000)

U x( ,6000)

U x( ,0)

L
2

x

Figure 21.12 Figure 21.13

The second initial temperature function we consider is f(x) = U0(1−x2/L2)+ULx/L, a
distribution that does not give rise to abrupt temperature changes at time t = 0 since f(0) =
U0 and f(L) = UL. In this case, coefficients bn in 21.49 are bn = 4U0[1 + (−1)n+1]/(n3π3),
and

U(x, t) = U0 +
(UL − U0)x

L
+

8U0

π3

∞∑

n=1

1
(2n− 1)3

e−(2n−1)2π2kt/L2
sin

(2n− 1)πx
L

.

As shown in Figure 21.13, the transition from initial to steady-state temperature is smooth
for all 0 ≤ x ≤ L. Supporting this is the heat flux vector

q(x, t) =
κ

L

[
U0 − UL − 8U0

π2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/L2
cos

(2n− 1)πx
L

]
.

The series herein converges for 0 ≤ x ≤ L and t ≥ 0. If we take limits as x → 0+ and
t→ 0+, we find the initial heat flux across the end x = 0,

q(0+, 0+) =
κ

L

[
U0 − UL − 8U0

π2

∞∑

n=1

1
(2n− 1)2

]
=
κ

L

[
U0 − UL − 8U0

π2

(
π2

8

)]
= −κUL

L
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(since
∑∞

n=1 1/(2n− 1)2 = π2/8). Perhaps unexpectedly, we find that the direction of heat
flow across x = 0 at time t = 0 is completely dictated by the sign of UL. When UL < 0, heat
flows into the rod, and when UL > 0, heat flows out. This is most easily seen by calculating
the derivative of the initial temperature distribution in the rod at x = 0, f ′(0) = UL/L. If
UL < 0, points in the rod near x = 0 have temperature less than those in the end x = 0,
and heat flows into the rod; if UL > 0, points near x = 0 are at a higher temperature than
those at x = 0, and heat flows out of the rod.

We have considered time-independent nonhomogeneities for initial boundary values
problems associated with the one-dimensional heat and vibration equations, nonhomo-
geneites that can occur in the PDE and/or the boundary conditions. Boundary value
problems associated with Laplace’s equation in two dimensions

∂2V

∂x2
+
∂2V

∂y2
= 0, (21.51)

are somewhat different. When a nonhomogeneity F (x, y) is introduced into this equation,

∂2V

∂x2
+
∂2V

∂y2
= F (x, y), (21.52)

the equation is known as Poisson’s equation.
We shall not consider it here. What about
nonhomogeneous boundary conditions? For
instance, suppose we are to solve Laplace’s
equation in the rectangle shown to the right
with nonzero boundary condition on all four
sides. Unlike the heat and wave equations,
we can break this problem into two homo-
geneous problems whose sum is the required

y

x

L

L

V h x

V g y

= 2( )

= 2( )

1

1

V h x= ( )

g y( )V=

function. The boundary value problem for Figure 21.14
V (x, y) is

∂2V

∂x2
+
∂2V

∂y2
= 0, 0 < x < L, 0 < y < L′, (21.53a)

V (0, y) = g1(y), 0 < y < L′, (21.53b)
V (L, y) = g2(y), 0 < y < L′, (21.53c)
V (x, 0) = h1(x), 0 < x < L, (21.53d)
V (x, L′) = h2(x), 0 < x < L. (21.53e)

Suppose that V1(x, y) and V2(x, y) are solutions of Laplace’s equation satisfying the bound-
ary conditions in Figure 21.15a,b. It is straightforward to show that the sum of these
functions V (x, y) = V1(x, y) + V2(x, y) satisfies problem 21.53. In addition, each of these
problems can be solved by separation of variables. Here is an example.
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Figure 21.15a Figure 21.15b
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Example 21.5 Find the solution of boundary value problem 21.53 when g1(y) = −1, g2(y) = 0, h1(x) = 1,
and h2(x) = 0.

Solution The solution is the sum of the functions V1(x, y) and V2(x, y) that satisfy
Laplace’s equation inside the rectangles and the boundary conditions on the edges of the
rectangles in Figures 21.16a,b. We solved the problem for V2(x, y) in Example 21.2. The
solution is

V2(x, y) =
4
π

∞∑

n=1

1
2n− 1

[
e(2n−1)π(L′−y)/L − e−(2n−1)π(L′−y)/L

e(2n−1)πL′/L − e−(2n−1)πL′/L

]
sin

(2n− 1)πx
L

.

Solution V1(x, y) can be obtained by interchanging variables in V2(x, y) and reversing the
sign,

V1(x, y) = −
4
π

∞∑

n=1

1
2n− 1

[
e(2n−1)π(L−x)/L′ − e−(2n−1)π(L−x)/L′

e(2n−1)πL/L′ − e−(2n−1)πL/L′

]
sin

(2n− 1)πy
L′ .

The solution of the required problem is then V1(x, y) + V2(x, y).•
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EXERCISES 21.3

Part A Heat Conduction Problems

1. A homogeneous, isotropic rod with insulated sides has initial temperature distribution ULx/L,
0 ≤ x ≤ L (UL a constant). For time t > 0, its ends x = 0 and x = L are held at temperatures
0◦C and UL

◦C, respectively. Find the temperature distribution in the rod for t > 0.

2. A homogeneous, isotropic rod with insulated sides is initially (t = 0) at constant temperature U0
◦C

throughout. For t > 0, heat is added at the end x = 0 at a constant rate Q W/m2, and end x = L
continues to be held at temperature U0

◦C. Find the temperature in the rod for 0 < x < L and
t > 0.

3. A cylindrical, homogeneous, isotropic rod with insulated sides is initially at temperature U0(1 −
x/L), where U0 is a constant. For time t > 0, the end x = 0 is maintained at temperature U0 and
end x = L is insulated. Find the temperature in the rod for 0 < x < L and t > 0.

4. Repeat Exercise 3 if heat is added uniformly over the end x = L at a constant rate Q W/m2.

5. A cylindrical, homogeneous, isotropic rod with insulated sides has temperature 20◦C throughout
(0 ≤ x ≤ L) at time t = 0. For t > 0, a constant electric current I is passed along the length of
the rod, creating heat generation g(x, t) = I2/(A2σ), where σ is the electrical conductivity of the
rod and A is its cross-sectional area. If the ends of the rod are held at temperature 0◦C for t > 0,
find the temperature in the rod for t > 0 and 0 < x < L.

6. Repeat Exercise 5 if the ends of the rod are held at temperature 100◦C for t > 0.

7. Repeat Exercise 5 if the ends x = 0 and x = L of the rod are held at temperatures U0 and UL,
respectively, for t > 0.
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Part B Vibration Problems

8. A taut string has its ends fixed at x = 0 and x = L on the x-axis. It is given an initial displacement
at time t = 0 of f(x), 0 ≤ x ≤ L, and an initial velocity g(x), 0 ≤ x ≤ L. If an external force
per unit length of constant magnitude acts vertically downward at every point on the string, find
a series representation for displacements in the string for t > 0 and 0 < x < L.

9. A taut string has an end at x = 0 fixed on the x-axis, but the end at x = L is removed a small
amount yL away from the x-axis and kept at this position. If the string has initial position f(x)
and velocity g(x) (at time t = 0), find a series representation for displacements for t > 0 and
0 < x < L.

10. The end x = 0 of a taut string is fixed on the x-axis. The end x = L is looped around a smooth
vertical support. If the string falls from rest along the x-axis, and a constant vertical force F0 acts
on the loop at x = L, find displacements of the string. Take gravity into account.

Part C Potential Problems

11. Find a formula for the solution of Laplace’s equation inside the rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L′

in Figure 21.14 when g1(y) = h1(x) = 0 and g2(y) = h2(x) = 1 .

ANSWERS

1. ULx/L

2.
Q

κ
(L− x) + U0 −

8QL
κπ2

∞∑

n=1

1
(2n− 1)2

e−(2n−1)2π2kt/(4L2) cos
(2n− 1)πx

2L

3. U0 +
8U0

π2

∞∑

n=1

(−1)n

(2n− 1)2
e−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

4.
Qx

κ
+ U0 +

8(U0κ+QL)
κπ2

∞∑

n=1

(−1)n

(2n− 1)2
e−(2n−1)2π2kt/(4L2) sin

(2n− 1)πx
2L

5.
I2x(L− x)

2κA2σ
+

4
π

∞∑

n=1

[
20

2n− 1
− I2L2

κA2σπ2(2n− 1)3

]
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

6. 100 +
I2x(L− x)

2κA2σ
− 4
π

∞∑

n=1

[
80

2n− 1
+

I2L2

κA2σπ2(2n− 1)3

]
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

7.
I2x(L− x)

2κA2σ
+
(
UL − U0

L

)
x+ U0 −

2
π

∞∑

n=1

U0 + UL(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L

+
4
π

∞∑

n=1

[
20

2n− 1
− I2L2

κA2σπ2(2n− 1)3

]
e−(2n−1)2π2kt/L2

sin
(2n− 1)πx

L

8. −kx(L− x)
2ρc2

+
∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
, where

an =
2
L

∫ L

0

[
f(x) +

kx(L− x)
2ρc2

]
sin

nπx

L
dx, bn =

2
nπc

∫ L

0

g(x) sin
nπx

L
dx

9. ψ(x) +
∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
, where

ψ(x) =
yLx

L
an =

2
L

∫ L

0

[f(x) − ψ(x)] sin
nπx

L
dx, bn =

2
nπc

∫ L

0

g(x) sin
nπx

L
dx

10. −gx(x− 2L)
2c2

+
F0x

τ
+

8L
π2

∞∑

n=1

[
2Lg

(2n− 1)3πc2
+
F0(−1)n+1

(2n− 1)2τ

]
cos

(2n− 1)πct
2L

sin
(2n− 1)πx

2L
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11.
4
π

∞∑

n=1

e(2n−1)πy/L − e−(2n−1)πy/L

enπL′/L − e−nπL′/L
sin

(2n− 1)πx
L

+
4
π

∞∑

n=1

e(2n−1)πx/L′ − e−(2n−1)πx/L′

enπL/L′ − e−nπL/L′ sin
(2n− 1)πy

L′


