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EXERCISES 17.3

2. The only singular point of the differential equation is x = 0. Since x

(
2
x2

)
=

2
x

does not have a

Maclaurin series, x = 0 is an irregular singular point.

4. The only singular point of the differential equation is x = 0. Since x2

(
1
x3

)
=

1
x

does not have a

Maclaurin series, x = 0 is an irregular singular point.
6. Singular points of the differential equation are x = ±1. Since

(x − 1)
(

−1
x2 − 1

)
=

−1
x + 1

and (x − 1)2
(

x

x2 − 1

)
=

x(x − 1)
x + 1

,

both have convergent Taylor series around x = 1, x = 1 is a regular singular point. Similar reasoning
shows that x = −1 is also regular singular.

8. Singular points of the differential equation are x = (2n + 1)π/2, where n is an integer. The function
[x − (2n + 1)π/2] sinx certainly has a Taylor series about x = (2n + 1)π/2. Consider now the function
[x−(2n+1)π/2]2(−3 tanx). We use L’Hôpital’s rule to show that the function has a limit as x approaches
(2n + 1)π/2,

lim
x→(2n+1)π/2

[x − (2n + 1)π/2]2(−3 tanx) = lim
x→(2n+1)π/2

−3[x − (2n + 1)π/2]2

cot x

= lim
x→(2n+1)π/2

−6[x − (2n + 1)π/2]
− csc2 x

= 0.

It now follows that the function [x− (2n + 1)π/2]2(−3 tanx) has a Taylor series about x = (2n + 1)π/2,
and the x = (2n + 1)π/2 are regular singular points.

10. This differential equation has no real singular points.
12. To find Frobenius solutions about x = 0, we substitute y(x) =

∑∞
n=0 anxn+r into the differential equation

0 =
∞∑

n=0

(n + r)(n + r − 1)anxn+r +
∞∑

n=0

(n + r)anxn+r +
∞∑

n=0

anxn+r+2 +
∞∑

n=0

−(an/4)xn+r

=
∞∑

n=0

(n + r)(n + r − 1)anxn+r +
∞∑

n=0

(n + r)anxn+r +
∞∑

n=2

an−2x
n+r +

∞∑

n=0

−(an/4)xn+r

=
[
r(r − 1)a0 + ra0 −

a0

4

]
xr +

[
(r + 1)ra1 + (r + 1)a1 −

a1

4

]
xr+1

+
∞∑

n=2

[
(n + r)(n + r − 1)an + (n + r)an + an−2 −

an

4

]
xn+r .

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is

0 = r(r − 1) + r − 1
4

= r2 − 1
4

=⇒ r = ±1
2
,

a case 3 situation. The coefficient of xr+1 requires

[(r + 1)r + (r + 1) − 1/4]a1 = 0.

Since this vanishes when r = −1/2, there is the possibility that this indicial root may give a general
solution. When r = −1/2, equating the remainder of the coefficients to zero gives

(
n − 1

2

) (
n − 3

2

)
an +

(
n − 1

2

)
an + an−2 −

an

4
= 0.
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This gives the recurrence relation

an =
−an−2(

n − 1
2

) (
n − 3

2

)
+

(
n − 1

2

)
− 1

4

=
−4an−2

(2n − 1)(2n − 3) + 2(2n − 1) − 1
=

−an−2

n(n − 1)
, n ≥ 2.

Iteration of this relation yields

a2 =
−a0

2
, a3 =

−a1

6
, a4 =

−a2

12
=

a0

4!
, a5 =

−a3

20
=

a1

5!
, . . . .

Thus, when r = −1/2, we obtain a general solution

y(x) = x−1/2

[
a0

(
1 − x2

2!
+

x4

4!
− · · ·

)
+ a1

(
x − x3

3!
+

x5

5!
− · · ·

)]

=
a0 cosx + a1 sin x√

x
,

valid for all x, except the singular point x = 0.
14. To find Frobenius solutions about x = 0, we substitute y(x) =

∑∞
n=0 anxn+r into the differential equation

0 =
∞∑

n=0

(n + r)(n + r − 1)anxn+r−1 +
∞∑

n=0

(n + r)anxn+r−1 +
∞∑

n=0

−(n + r)anxn+r +
∞∑

n=0

−anxn+r

=
∞∑

n=−1

(n + r + 1)(n + r)an+1x
n+r +

∞∑

n=−1

(n + r + 1)an+1x
n+r +

∞∑

n=0

−(n + r)anxn+r +
∞∑

n=0

−anxn+r

= [r(r − 1)a0 + ra0]xr−1 +
∞∑

n=0

[(n + r + 1)(n + r)an+1 + (n + r + 1)an+1 − (n + r)an − an] xn+r.

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is

0 = r(r − 1) + r = r2 =⇒ r = 0,

a case 2 situation. When we set r = 0 and equate the remainder of the coefficients to zero,

(n + 1)nan+1 + (n + 1)an+1 − nan − an = 0 =⇒ an+1 =
an

n + 1
, n ≥ 0.

Iteration of this relation yields

a1 = a0, a2 =
a1

2
=

a0

2
, a3 =

a2

3
=

a0

3!
, a4 =

a3

4
=

a0

4!
, . . . .

Thus, when r = 0, we obtain the solution

y(x) = a0

(
1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)
= a0e

x.

16. To find Frobenius solutions about x = 0, we substitute y(x) =
∑∞

n=0 anxn+r into the differential equation

0 =
∞∑

n=0

(n + r)(n + r − 1)anxn+r +
∞∑

n=0

3(n + r)anxn+r +
∞∑

n=0

anxn+r

=
∞∑

n=0

[(n + r)(n + r − 1)an + 3(n + r)an + an]xn+r.

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is
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0 = r(r − 1) + 3r + 1 = (r + 1)2 =⇒ r = −1,−1,

a case 2 situation. When we set r = −1 and equate the remainder of the coefficients to zero,

[(n − 1)(n − 2) + 3(n − 1) + 1]an = 0 =⇒ n2an = 0, n ≥ 1.

This requires that an = 0 for n ≥ 1. Thus, when r = −1, we obtain the solution

y(x) = x−1a0 =
a0

x
.

18. To find Frobenius solutions about x = 0, we substitute y(x) =
∑∞

n=0 anxn+r into the differential equation

0 =
∞∑

n=0

2(n + r)(n + r − 1)anxn+r−1 +
∞∑

n=0

5(n + r)anxn+r−1 +
∞∑

n=0

−10(n + r)anxn+r +
∞∑

n=0

−5anxn+r

=
∞∑

n=−1

2(n + r + 1)(n + r)an+1x
n+r +

∞∑

n=−1

5(n + r + 1)an+1x
n+r +

∞∑

n=0

−10(n + r)anxn+r +
∞∑

n=0

−5anxn+r

= [2r(r − 1)a0 + 5ra0]xr−1 +
∞∑

n=0

[2(n + r + 1)(n + r)an+1 + 5(n + r + 1)an+1 − 10(n + r)an − 5an] xn+r.

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is

0 = 2r(r − 1) + 5r = r(2r + 3) =⇒ r = 0,−3/2,

a case 1 situation. When we set r = 0 and equate the remainder of the coefficients to zero,

2(n + 1)nan+1 + 5(n + 1)an+1 − 10nan − 5an = 0,

from which

an+1 =
(10n + 5)an

2n(n + 1) + 5(n + 1)
=

5(2n + 1)an

(2n + 5)(n + 1)
, n ≥ 0.

Iteration of this relation yields

a1 =
5a0

5
= a0, a2 =

5 · 3a1

7 · 2
=

5 · 3a0

7 · 2
, a3 =

5 · 5a2

9 · 3
=

53 · 3a0

2 · 3 · 7 · 9
,

a4 =
5 · 7a3

11 · 4
=

54 · 3a0

2 · 3 · 4 · 9 · 11
, a5 =

5 · 9a4

13 · 5
=

55 · 3
2 · 3 · 4 · 5 · 11 · 13

a0, . . . .

If we set a0 = 1, a solution corresponding to r = 0 is

y1(x) = x0

(
1 + x +

3 · 5
2 · 7

x2 +
53 · 3

2 · 3 · 7 · 9
x3 +

54 · 3
2 · 3 · 4 · 9 · 11

x4 +
55 · 3

2 · 3 · 4 · 5 · 11 · 13
x5 + · · ·

)

= 3
∞∑

n=0

5n

n!(2n + 1)(2n + 3)
xn.

Now for the indicial root r = −3/2. When we set r = −3/2 in

2(n + r + 1)(n + r)an+1 + 5(n + r + 1)an+1 − 10(n + r)an − 5an = 0,

we obtain

2
(

n −
1
2

) (
n −

3
2

)
an+1 + 5

(
n −

1
2

)
an+1 − 10

(
n −

3
2

)
an − 5an = 0,

or,
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(2n − 1)(2n − 3)an+1 + 5(2n− 1)an+1 − (20n− 30)an − 10an = 0.

This gives the recurrence relation

an+1 =
20n − 30 + 10

(2n − 1)(2n − 3) + 5(2n− 1)
an =

10(n − 1)an

(2n − 1)(n + 1)
, n ≥ 0.

Iteration yields a1 = 10a0, and 0 = a2 = a3 = . . .. If we set a0 = 1, a solution corresponding to the
indicial root r = −3/2 is

y2(x) = x−3/2(1 + 10x) = x−3/2 + 10x−1/2.

A general solution of the differential equation is y(x) = Ay1(x) + By2(x).
20. To find Frobenius solutions about x = 0, we substitute y(x) =

∑∞
n=0 anxn+r into the differential equation

0 =
∞∑

n=0

(n + r)(n + r − 1)anxn+r−1 +
∞∑

n=0

(n + r)anxn+r +
∞∑

n=0

−(n + r)anxn+r−1 +
∞∑

n=0

−2anxn+r

=
∞∑

n=−1

(n + r + 1)(n + r)an+1x
n+r +

∞∑

n=0

(n + r)anxn+r +
∞∑

n=−1

−(n + r + 1)an+1x
n+r +

∞∑

n=0

−2anxn+r

= [r(r − 1)a0 − ra0]xr−1 +
∞∑

n=0

[(n + r + 1)(n + r)an+1 + (n + r)an − (n + r + 1)an+1 − 2an] xn+r.

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is

0 = r(r − 1) − r = r(r − 2) =⇒ r = 0, 2,

a case 3 situation. When we set r = 0 and equate the remainder of the coefficients to zero,

(n + 1)nan+1 + nan − (n + 1)an+1 − 2an = 0 =⇒ an+1 =
(2 − n)an

n(n + 1) − (n + 1)
=

(2 − n)an

(n + 1)(n − 1)
, n ≥ 0.

When we set n = 0 in this recurrence relation, we obtain a1 = −2a0. To substitute n = 1, we must
return to the version of the recurrence relation without division,

2(0)a2 = (1)a1 =⇒ a1 = 0.

This, in turn, implies that all coefficients are zero except a2 which is arbitrary. In other words, the
solution corresponding to r = 0 is y(x) = a2x

2. When we work with r = 2, we obtain

(n + 3)(n + 2)an+1 + (n + 2)an − (n + 3)an+1 − 2an = 0 =⇒ an+1 =
−nan

(n + 3)(n + 1)
, n ≥ 0.

This relation implies that all coefficients, except a0 vanish. The solution corresponding to r = 2 is
therefore y(x) = a0x

2.
22. We solved this differential equation earlier in this section. Substitution of y(x) =

∑∞
n=0 anxn+r led to

0 = xr

[
(r2 + 3r + 2)a0 + (r2 + 5r + 6)a1x +

∞∑

n=2

{[(n + r)(n + r + 3) + 2]an + an−2}xn

]
.

By using r2 + 3r + 2 = 0 as the indicial equation, we obtained r = −1 and r = −2, and the solution

y(x) =
a0 cosx + a1 sin x

x2
.

Suppose now that we choose to determine the indicial roots by setting

0 = r2 + 5r + 6 = (r + 2)(r + 3) =⇒ r = −2,−3.
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With r = −3,

0 = (r2 + 3r + 2)a0 = (9 − 9 + 2)a0 =⇒ a0 = 0.

The remaining coefficients imply that

(n − 3)(n − 4)an + 4(n − 3)an + an−2 + 2an = 0 =⇒ an =
−an−2

(n − 1)(n − 2)
, n ≥ 2.

To set n = 2, we return to the nondivisional form of this relation,

(0)a2 = −a0 =⇒ a0 = 0.

Iteration of the recurrence relation now gives

a3 =
−a1

2
, a4 =

−a2

3 · 2
, a5 =

−a3

4 · 3
=

a1

4!
, a6 =

−a4

5 · 4
=

a2

5!
.

Thus, from the indicial root r = −3, we obtain a general solution

y(x) = x−3

[
a1

(
x − x3

2!
+

x5

4!
+ · · ·

)
+ a2

(
x2 − x4

3!
+

x6

5!
+ · · ·

)]

= x−2

[
a1

(
1 − x2

2!
+

x4

4!
+ · · ·

)
+ a2

(
x − x3

3!
+

x5

5!
+ · · ·

)]

=
a1 cosx + a2 sin x

x2
.

CHAPTER 18

EXERCISES 18.1

2. The Fourier coefficients for this function are

a0 =
1
L

∫ 2L

0

(2x2 − 1) dx =
16L2

3
− 2,

an =
1
L

∫ 2L

0

(2x2 − 1) cos
nπx

L
dx =

8L2

n2π2
, bn =

1
L

∫ 2L

0

(2x2 − 1) sin
nπx

L
dx =

−8L2

nπ
.

The Fourier series of f(x) is therefore

8L2

3
− 1 +

∞∑

n=1

(
8L2

n2π2
cos

nπx

L
− 8L2

nπ
sin

nπx

L

)
=

8L2

3
− 1 +

8L2

π2

∞∑

n=1

(
1
n2

cos
nπx

L
− π

n
sin

nπx

L

)
.

The function f(x) and the function to which its Fourier series converges are shown below.

y

x-1

8 2-1

2 4-2

L

L L L

y

x-1

8 2-1

2 4-2

L

L L L

4 2-1L

4. The Fourier coefficients for this function are

a0 =
1
L

∫ 2L

0

3x dx = 6L, an =
1
L

∫ 2L

0

3x cos
nπx

L
dx = 0, bn =

1
L

∫ 2L

0

3x sin
nπx

L
dx = −

6L

nπ
.


