EXERCISES 17.3

2. The only singular point of the differential equation is $x=0$. Since $x\left(\frac{2}{x^{2}}\right)=\frac{2}{x}$ does not have a Maclaurin series, $x=0$ is an irregular singular point.
3. The only singular point of the differential equation is $x=0$. Since $x^{2}\left(\frac{1}{x^{3}}\right)=\frac{1}{x}$ does not have a Maclaurin series, $x=0$ is an irregular singular point.
4. Singular points of the differential equation are $x= \pm 1$. Since

$$
(x-1)\left(\frac{-1}{x^{2}-1}\right)=\frac{-1}{x+1} \quad \text { and } \quad(x-1)^{2}\left(\frac{x}{x^{2}-1}\right)=\frac{x(x-1)}{x+1}
$$

both have convergent Taylor series around $x=1, x=1$ is a regular singular point. Similar reasoning shows that $x=-1$ is also regular singular.
8. Singular points of the differential equation are $x=(2 n+1) \pi / 2$, where n is an integer. The function $[x-(2 n+1) \pi / 2] \sin x$ certainly has a Taylor series about $x=(2 n+1) \pi / 2$. Consider now the function $[x-(2 n+1) \pi / 2]^{2}(-3 \tan x)$. We use L'Hôpital's rule to show that the function has a limit as x approaches $(2 n+1) \pi / 2$,

$$
\begin{aligned}
\lim _{x \rightarrow(2 n+1) \pi / 2}[x-(2 n+1) \pi / 2]^{2}(-3 \tan x) & =\lim _{x \rightarrow(2 n+1) \pi / 2} \frac{-3[x-(2 n+1) \pi / 2]^{2}}{\cot x} \\
& =\lim _{x \rightarrow(2 n+1) \pi / 2} \frac{-6[x-(2 n+1) \pi / 2]}{-\csc ^{2} x}=0
\end{aligned}
$$

It now follows that the function $[x-(2 n+1) \pi / 2]^{2}(-3 \tan x)$ has a Taylor series about $x=(2 n+1) \pi / 2$, and the $x=(2 n+1) \pi / 2$ are regular singular points.
10. This differential equation has no real singular points.
12. To find Frobenius solutions about $x=0$, we substitute $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ into the differential equation

$$
\begin{aligned}
0= & \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r+2}+\sum_{n=0}^{\infty}-\left(a_{n} / 4\right) x^{n+r} \\
= & \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r}+\sum_{n=2}^{\infty} a_{n-2} x^{n+r}+\sum_{n=0}^{\infty}-\left(a_{n} / 4\right) x^{n+r} \\
= & {\left[r(r-1) a_{0}+r a_{0}-\frac{a_{0}}{4}\right] x^{r}+\left[(r+1) r a_{1}+(r+1) a_{1}-\frac{a_{1}}{4}\right] x^{r+1} } \\
& \quad+\sum_{n=2}^{\infty}\left[(n+r)(n+r-1) a_{n}+(n+r) a_{n}+a_{n-2}-\frac{a_{n}}{4}\right] x^{n+r} .
\end{aligned}
$$

The only way the series can vanish for all x in some interval around $x=0$ is for each and every coefficient to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine r; that is, the indicial equation is

$$
0=r(r-1)+r-\frac{1}{4}=r^{2}-\frac{1}{4} \quad \Longrightarrow \quad r= \pm \frac{1}{2}
$$

a case 3 situation. The coefficient of x^{r+1} requires

$$
[(r+1) r+(r+1)-1 / 4] a_{1}=0
$$

Since this vanishes when $r=-1 / 2$, there is the possibility that this indicial root may give a general solution. When $r=-1 / 2$, equating the remainder of the coefficients to zero gives

$$
\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) a_{n}+\left(n-\frac{1}{2}\right) a_{n}+a_{n-2}-\frac{a_{n}}{4}=0
$$

This gives the recurrence relation

$$
a_{n}=\frac{-a_{n-2}}{\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+\left(n-\frac{1}{2}\right)-\frac{1}{4}}=\frac{-4 a_{n-2}}{(2 n-1)(2 n-3)+2(2 n-1)-1}=\frac{-a_{n-2}}{n(n-1)}, \quad n \geq 2
$$

Iteration of this relation yields

$$
a_{2}=\frac{-a_{0}}{2}, \quad a_{3}=\frac{-a_{1}}{6}, \quad a_{4}=\frac{-a_{2}}{12}=\frac{a_{0}}{4!}, \quad a_{5}=\frac{-a_{3}}{20}=\frac{a_{1}}{5!}, \ldots
$$

Thus, when $r=-1 / 2$, we obtain a general solution

$$
\begin{aligned}
y(x) & =x^{-1 / 2}\left[a_{0}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots\right)+a_{1}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)\right] \\
& =\frac{a_{0} \cos x+a_{1} \sin x}{\sqrt{x}}
\end{aligned}
$$

valid for all x, except the singular point $x=0$.
14. To find Frobenius solutions about $x=0$, we substitute $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ into the differential equation

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}-(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty}-a_{n} x^{n+r} \\
& =\sum_{n=-1}^{\infty}(n+r+1)(n+r) a_{n+1} x^{n+r}+\sum_{n=-1}^{\infty}(n+r+1) a_{n+1} x^{n+r}+\sum_{n=0}^{\infty}-(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty}-a_{n} x^{n+r} \\
& =\left[r(r-1) a_{0}+r a_{0}\right] x^{r-1}+\sum_{n=0}^{\infty}\left[(n+r+1)(n+r) a_{n+1}+(n+r+1) a_{n+1}-(n+r) a_{n}-a_{n}\right] x^{n+r} .
\end{aligned}
$$

The only way the series can vanish for all x in some interval around $x=0$ is for each and every coefficient to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine r; that is, the indicial equation is

$$
0=r(r-1)+r=r^{2} \quad \Longrightarrow \quad r=0
$$

a case 2 situation. When we set $r=0$ and equate the remainder of the coefficients to zero,

$$
(n+1) n a_{n+1}+(n+1) a_{n+1}-n a_{n}-a_{n}=0 \quad \Longrightarrow \quad a_{n+1}=\frac{a_{n}}{n+1}, \quad n \geq 0
$$

Iteration of this relation yields

$$
a_{1}=a_{0}, \quad a_{2}=\frac{a_{1}}{2}=\frac{a_{0}}{2}, \quad a_{3}=\frac{a_{2}}{3}=\frac{a_{0}}{3!}, \quad a_{4}=\frac{a_{3}}{4}=\frac{a_{0}}{4!}, \ldots .
$$

Thus, when $r=0$, we obtain the solution

$$
y(x)=a_{0}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)=a_{0} e^{x}
$$

16. To find Frobenius solutions about $x=0$, we substitute $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ into the differential equation

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r}+\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty} a_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty}\left[(n+r)(n+r-1) a_{n}+3(n+r) a_{n}+a_{n}\right] x^{n+r}
\end{aligned}
$$

The only way the series can vanish for all x in some interval around $x=0$ is for each and every coefficient to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine r; that is, the indicial equation is

$$
0=r(r-1)+3 r+1=(r+1)^{2} \quad \Longrightarrow \quad r=-1,-1,
$$

a case 2 situation. When we set $r=-1$ and equate the remainder of the coefficients to zero,

$$
[(n-1)(n-2)+3(n-1)+1] a_{n}=0 \quad \Longrightarrow \quad n^{2} a_{n}=0, \quad n \geq 1
$$

This requires that $a_{n}=0$ for $n \geq 1$. Thus, when $r=-1$, we obtain the solution

$$
y(x)=x^{-1} a_{0}=\frac{a_{0}}{x}
$$

18. To find Frobenius solutions about $x=0$, we substitute $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ into the differential equation

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty} 2(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} 5(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}-10(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty}-5 a_{n} x^{n+r} \\
& =\sum_{n=-1}^{\infty} 2(n+r+1)(n+r) a_{n+1} x^{n+r}+\sum_{n=-1}^{\infty} 5(n+r+1) a_{n+1} x^{n+r}+\sum_{n=0}^{\infty}-10(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty}-5 a_{n} x^{n+r} \\
& =\left[2 r(r-1) a_{0}+5 r a_{0}\right] x^{r-1}+\sum_{n=0}^{\infty}\left[2(n+r+1)(n+r) a_{n+1}+5(n+r+1) a_{n+1}-10(n+r) a_{n}-5 a_{n}\right] x^{n+r} .
\end{aligned}
$$

The only way the series can vanish for all x in some interval around $x=0$ is for each and every coefficient to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine r; that is, the indicial equation is

$$
0=2 r(r-1)+5 r=r(2 r+3) \quad \Longrightarrow \quad r=0,-3 / 2
$$

a case 1 situation. When we set $r=0$ and equate the remainder of the coefficients to zero,

$$
2(n+1) n a_{n+1}+5(n+1) a_{n+1}-10 n a_{n}-5 a_{n}=0
$$

from which

$$
a_{n+1}=\frac{(10 n+5) a_{n}}{2 n(n+1)+5(n+1)}=\frac{5(2 n+1) a_{n}}{(2 n+5)(n+1)}, \quad n \geq 0
$$

Iteration of this relation yields

$$
\begin{gathered}
a_{1}=\frac{5 a_{0}}{5}=a_{0}, \quad a_{2}=\frac{5 \cdot 3 a_{1}}{7 \cdot 2}=\frac{5 \cdot 3 a_{0}}{7 \cdot 2}, \quad a_{3}=\frac{5 \cdot 5 a_{2}}{9 \cdot 3}=\frac{5^{3} \cdot 3 a_{0}}{2 \cdot 3 \cdot 7 \cdot 9} \\
a_{4}=\frac{5 \cdot 7 a_{3}}{11 \cdot 4}=\frac{5^{4} \cdot 3 a_{0}}{2 \cdot 3 \cdot 4 \cdot 9 \cdot 11}, \quad a_{5}=\frac{5 \cdot 9 a_{4}}{13 \cdot 5}=\frac{5^{5} \cdot 3}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 11 \cdot 13} a_{0}, \ldots
\end{gathered}
$$

If we set $a_{0}=1$, a solution corresponding to $r=0$ is

$$
\begin{aligned}
y_{1}(x) & =x^{0}\left(1+x+\frac{3 \cdot 5}{2 \cdot 7} x^{2}+\frac{5^{3} \cdot 3}{2 \cdot 3 \cdot 7 \cdot 9} x^{3}+\frac{5^{4} \cdot 3}{2 \cdot 3 \cdot 4 \cdot 9 \cdot 11} x^{4}+\frac{5^{5} \cdot 3}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 11 \cdot 13} x^{5}+\cdots\right) \\
& =3 \sum_{n=0}^{\infty} \frac{5^{n}}{n!(2 n+1)(2 n+3)} x^{n} .
\end{aligned}
$$

Now for the indicial root $r=-3 / 2$. When we set $r=-3 / 2$ in

$$
2(n+r+1)(n+r) a_{n+1}+5(n+r+1) a_{n+1}-10(n+r) a_{n}-5 a_{n}=0
$$

we obtain

$$
2\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) a_{n+1}+5\left(n-\frac{1}{2}\right) a_{n+1}-10\left(n-\frac{3}{2}\right) a_{n}-5 a_{n}=0
$$

or,

$$
(2 n-1)(2 n-3) a_{n+1}+5(2 n-1) a_{n+1}-(20 n-30) a_{n}-10 a_{n}=0
$$

This gives the recurrence relation

$$
a_{n+1}=\frac{20 n-30+10}{(2 n-1)(2 n-3)+5(2 n-1)} a_{n}=\frac{10(n-1) a_{n}}{(2 n-1)(n+1)}, \quad n \geq 0
$$

Iteration yields $a_{1}=10 a_{0}$, and $0=a_{2}=a_{3}=\ldots$. If we set $a_{0}=1$, a solution corresponding to the indicial root $r=-3 / 2$ is

$$
y_{2}(x)=x^{-3 / 2}(1+10 x)=x^{-3 / 2}+10 x^{-1 / 2}
$$

A general solution of the differential equation is $y(x)=A y_{1}(x)+B y_{2}(x)$.
20. To find Frobenius solutions about $x=0$, we substitute $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ into the differential equation

$$
\begin{aligned}
0 & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r}+\sum_{n=0}^{\infty}-(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}-2 a_{n} x^{n+r} \\
& =\sum_{n=-1}^{\infty}(n+r+1)(n+r) a_{n+1} x^{n+r}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r}+\sum_{n=-1}^{\infty}-(n+r+1) a_{n+1} x^{n+r}+\sum_{n=0}^{\infty}-2 a_{n} x^{n+r} \\
& =\left[r(r-1) a_{0}-r a_{0}\right] x^{r-1}+\sum_{n=0}^{\infty}\left[(n+r+1)(n+r) a_{n+1}+(n+r) a_{n}-(n+r+1) a_{n+1}-2 a_{n}\right] x^{n+r} .
\end{aligned}
$$

The only way the series can vanish for all x in some interval around $x=0$ is for each and every coefficient to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine r; that is, the indicial equation is

$$
0=r(r-1)-r=r(r-2) \quad \Longrightarrow \quad r=0,2
$$

a case 3 situation. When we set $r=0$ and equate the remainder of the coefficients to zero,
$(n+1) n a_{n+1}+n a_{n}-(n+1) a_{n+1}-2 a_{n}=0 \quad \Longrightarrow \quad a_{n+1}=\frac{(2-n) a_{n}}{n(n+1)-(n+1)}=\frac{(2-n) a_{n}}{(n+1)(n-1)}, \quad n \geq 0$.
When we set $n=0$ in this recurrence relation, we obtain $a_{1}=-2 a_{0}$. To substitute $n=1$, we must return to the version of the recurrence relation without division,

$$
2(0) a_{2}=(1) a_{1} \Longrightarrow \quad a_{1}=0
$$

This, in turn, implies that all coefficients are zero except a_{2} which is arbitrary. In other words, the solution corresponding to $r=0$ is $y(x)=a_{2} x^{2}$. When we work with $r=2$, we obtain

$$
(n+3)(n+2) a_{n+1}+(n+2) a_{n}-(n+3) a_{n+1}-2 a_{n}=0 \quad \Longrightarrow \quad a_{n+1}=\frac{-n a_{n}}{(n+3)(n+1)}, \quad n \geq 0
$$

This relation implies that all coefficients, except a_{0} vanish. The solution corresponding to $r=2$ is therefore $y(x)=a_{0} x^{2}$.
22. We solved this differential equation earlier in this section. Substitution of $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$ led to

$$
0=x^{r}\left[\left(r^{2}+3 r+2\right) a_{0}+\left(r^{2}+5 r+6\right) a_{1} x+\sum_{n=2}^{\infty}\left\{[(n+r)(n+r+3)+2] a_{n}+a_{n-2}\right\} x^{n}\right]
$$

By using $r^{2}+3 r+2=0$ as the indicial equation, we obtained $r=-1$ and $r=-2$, and the solution

$$
y(x)=\frac{a_{0} \cos x+a_{1} \sin x}{x^{2}}
$$

Suppose now that we choose to determine the indicial roots by setting

$$
0=r^{2}+5 r+6=(r+2)(r+3) \quad \Longrightarrow \quad r=-2,-3
$$

With $r=-3$,

$$
0=\left(r^{2}+3 r+2\right) a_{0}=(9-9+2) a_{0} \quad \Longrightarrow \quad a_{0}=0
$$

The remaining coefficients imply that

$$
(n-3)(n-4) a_{n}+4(n-3) a_{n}+a_{n-2}+2 a_{n}=0 \quad \Longrightarrow \quad a_{n}=\frac{-a_{n-2}}{(n-1)(n-2)}, \quad n \geq 2
$$

To set $n=2$, we return to the nondivisional form of this relation,

$$
(0) a_{2}=-a_{0} \quad \Longrightarrow \quad a_{0}=0
$$

Iteration of the recurrence relation now gives

$$
a_{3}=\frac{-a_{1}}{2}, \quad a_{4}=\frac{-a_{2}}{3 \cdot 2}, \quad a_{5}=\frac{-a_{3}}{4 \cdot 3}=\frac{a_{1}}{4!}, \quad a_{6}=\frac{-a_{4}}{5 \cdot 4}=\frac{a_{2}}{5!} .
$$

Thus, from the indicial root $r=-3$, we obtain a general solution

$$
\begin{aligned}
y(x) & =x^{-3}\left[a_{1}\left(x-\frac{x^{3}}{2!}+\frac{x^{5}}{4!}+\cdots\right)+a_{2}\left(x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}+\cdots\right)\right] \\
& =x^{-2}\left[a_{1}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)+a_{2}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)\right] \\
& =\frac{a_{1} \cos x+a_{2} \sin x}{x^{2}} .
\end{aligned}
$$

CHAPTER 18

EXERCISES 18.1

2. The Fourier coefficients for this function are

$$
\begin{gathered}
a_{0}=\frac{1}{L} \int_{0}^{2 L}\left(2 x^{2}-1\right) d x=\frac{16 L^{2}}{3}-2, \\
a_{n}=\frac{1}{L} \int_{0}^{2 L}\left(2 x^{2}-1\right) \cos \frac{n \pi x}{L} d x=\frac{8 L^{2}}{n^{2} \pi^{2}}, \quad b_{n}=\frac{1}{L} \int_{0}^{2 L}\left(2 x^{2}-1\right) \sin \frac{n \pi x}{L} d x=\frac{-8 L^{2}}{n \pi} .
\end{gathered}
$$

The Fourier series of $f(x)$ is therefore

$$
\frac{8 L^{2}}{3}-1+\sum_{n=1}^{\infty}\left(\frac{8 L^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{L}-\frac{8 L^{2}}{n \pi} \sin \frac{n \pi x}{L}\right)=\frac{8 L^{2}}{3}-1+\frac{8 L^{2}}{\pi^{2}} \sum_{n=1}^{\infty}\left(\frac{1}{n^{2}} \cos \frac{n \pi x}{L}-\frac{\pi}{n} \sin \frac{n \pi x}{L}\right)
$$

The function $f(x)$ and the function to which its Fourier series converges are shown below.

4. The Fourier coefficients for this function are

$$
a_{0}=\frac{1}{L} \int_{0}^{2 L} 3 x d x=6 L, \quad a_{n}=\frac{1}{L} \int_{0}^{2 L} 3 x \cos \frac{n \pi x}{L} d x=0, \quad b_{n}=\frac{1}{L} \int_{0}^{2 L} 3 x \sin \frac{n \pi x}{L} d x=-\frac{6 L}{n \pi} .
$$

