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Maclaurin series, = 0 is an irregular singular point.

does not have a
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The only singular point of the differential equation is 2 = 0. Since 2 <—3)
x
Maclaurin series, = 0 is an irregular singular point.
Singular points of the differential equation are x = +1. Since

(==1) <:c2_—1 1> - :c_+11 and (@ —1)° (:vQI— 1) B x(war_ll)’

both have convergent Taylor series around z = 1, x = 1 is a regular singular point. Similar reasoning
shows that © = —1 is also regular singular.

Singular points of the differential equation are x = (2n + 1)7/2, where n is an integer. The function
[ — (2n 4+ 1)7/2] sinz certainly has a Taylor series about x = (2n + 1)7/2. Consider now the function
[z—(2n+1)7/2]?(—3 tanx). We use L’Hopital’s rule to show that the function has a limit as  approaches
2n+ 1)7/2,

—3z — (2n+ ) /2)?

li — (@n+ /27 (- = i
m—>(27111—11-11)7r/2 [I ( n )ﬂ-/ ] ( 3tan17) w—>(21111-ir-11)7r/2 cotx
_ lim —6[x — (2n2—|— 1) /2] _o.
—(2n+1)7/2 —CScex

It now follows that the function [z — (2n + 1)7/2]?(=3 tanz) has a Taylor series about = = (2n + 1)7/2,
and the = (2n + 1) /2 are regular singular points.

This differential equation has no real singular points.

To find Frobenius solutions about z = 0, we substitute y(z) = >_°°  a,z™*" into the differential equation

:i (n+r)(n+r—1a "+T+Z (n+r)a,x "+T+Za x"+r+2+z "t

n=0

in—i—r n+r—1)a "”—i—Z (n+r)a,x "”—i—Za _2$H+T+Z "t

= [r(r Dag + rap — QZ} "+ [(r + Dra; + (r+1)ay — %} z"

+ Z {(n +r)n+r—1a,+ N+ r)ay +an_2 — %} "t
n=2

The only way the series can vanish for all x in some interval around = = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is
1 2
O:r(r—l)—l—r—zzr —

a case 3 situation. The coefficient of 2™+ requires

(r+1)r+(r+1)—1/4a = 0.

1
— ::l:—
T 2,

RNy

Since this vanishes when r = —1/2; there is the possibility that this indicial root may give a general
solution. When r = —1/2, equating the remainder of the coefficients to zero gives

1 3 4 1 4 a"*O
n2n2ann2anan,2 1 =V
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This gives the recurrence relation

—0p—2 o _4an72 —0p—2

= <n—3) (n_§> N (n_1> 1T @i-Den-3+2en-D-1 am-1 "%
2 2 2 4
Tteration of this relation yields
—ayp —aq —as  ag —as @
A== G3= =, M=o =on G5= o =
Thus, when » = —1/2, we obtain a general solution

ZZ?2 ZZ?4 .IS $5
y(x)_xl/2|:a0<1_ +E_'”>+a1(x_3_+§_”.):|

ap cosx + ap sinzx
VT ’

valid for all x, except the singular point x = 0.

To find Frobenius solutions about 2z = 0, we substitute y(z) = >, ; a,z" 1" into the differential equation
o0 o0 o0
0= Z (n+7r)(n+r—1a,z"t ! +Z(n+r) el +Z (n+r)a "”—i-z—an:z:"”
n=0 n=0
o0 o0
= Z (n+r+1)(n+r)an+1x"+T + Z (n+7‘+1)an+1x"+r —I—Z n—|—7' vt +Z anx
n=-—1 n=-—1 n=0
o0
= [r(r — Dag + raglz""* + Z [(n+r+1)(n+r)an1+ 0 +7r+Dapi — (n+7)a, —ap] 2™t
n=0
The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is
O=r(r—1)+r=r> = r=0,
a case 2 situation. When we set » = 0 and equate the remainder of the coefficients to zero,
a
(n+ Dnapy1 + (n+ Dape1 —nay, —a, =0 = an+1:n_:1, n>0
Iteration of this relation yields
ai ao az ao as ao
a; =a Gg=—=—, 3= —=—, QG=—=—
1 05 2 2 9 3 3 317 4 4 40
Thus, when r = 0, we obtain the solution
2 3 4
x x x
y(x) = ao (1+:v+ ty gt ) = age”.
To find Frobenius solutions about z = 0, we substitute y(z) = > - a,z™*" into the differential equation
o0 o0 o0
0= Z (n+7r)(n+7r—1)a,z"T" + Z 3(n+1)a,z" T + Z anx™ "
=0 n=0 n=0

Z n+r)(n+r—1a,+3(n+r)a, + ap)a™"".

The only way the series can vanish for all x in some interval around = = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is
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O=r(r—1)+3r+1=(r+1?> = r=-1,-1,
a case 2 situation. When we set » = —1 and equate the remainder of the coefficients to zero,
(n=1)(n—2)+3(n—-1)+1la, =0 = n?a, =0, n>1.

This requires that a,, = 0 for n > 1. Thus, when r = —1, we obtain the solution

18. To find Frobenius solutions about = 0, we substitute y(z) = Y. ; a,2™ " into the differential equation

o

2n+r)(n+r—1apa™ "~ 1+Z (n + r)apz™™ 1+Z ~10(n+1)a "+T+Z —Bana"t
n=0 n=0

3
Il
=]

oo
2(n+r+1)(n+r)apz™ + Z n4+7r+Dap 2™ + Z —10(n + r)a,z" " + Z —banx™ "

n=-—1 n=-—1 n=0

I
NE

= [2r(r — 1)ag + 5raglz" ' + Z 2(n+7+1)(n+7)ans1 +5(n+7+ Daprr — 10(n + r)a, — day] 2"
n=0

The only way the series can vanish for all x in some interval around x = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of x will always be used to determine
r; that is, the indicial equation is

O=2r(r—1)+5r=r(2r+3) = r=0,-3/2,
a case 1 situation. When we set » = 0 and equate the remainder of the coefficients to zero,
2(n+ 1)napt1 + 5(n+ Vap+1 — 10na,, — 5a, =0,

from which

(10n + 5)an, 52n 4+ 1)a,
Ap41 = = , n>0.
2n(n+1)+5(n+1) (@Cn+5)(n+1)
Iteration of this relation yields
a—%—a a_5-3a1_5-3a0 a_5-5a2_ 53 - 3ag
Loy T R E ey T v BT 93 T 23079
B Tas 54 3a0 5% _ 55.3 .
YT 114 2.3.4.9-11° " 135 2-3-4-5-11-13°°

If we set ag = 1, a solution corresponding to r = 0 is

35,, 53 4 53 4 55. 3 5, >

1
ple) = ( Tty T e 3ot T3 a0 1t T234.5-11-13"

o0

5n
=3 "
nZ:o nl(2n+1)(2n + 3)96

Now for the indicial root r = —3/2. When we set r = —3/2 in

2(n+r+1)(n+r7r)apt1 +5(n+r+ 1apt1 — 10(n + r)a, — 5a, =0,

1 3 1 3
2<n—§> (n—E)an+1—|—5(n—§>an+1—10<n—§>an—5an—0,

we obtain

or
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(2n —1)(2n — 3)an+1 + 5(2n — 1)an4+1 — (20n — 30)a,, — 10a,, = 0.

This gives the recurrence relation

20n — 30+ 10 10(n — 1)ay,
Ap41 = ap = , n>0.
(2n—-1)2n—3)+5(2n—1) 2n—-1)(n+1)
Iteration yields a; = 10ag, and 0 = ag = ag = .... If we set ag = 1, a solution corresponding to the
indicial root r = —3/2 is

yo(x) = 273/2(1 +102) = 273/2 + 102~ /2.

A general solution of the differential equation is y(x) = Ay;(z) + Byz(z).
To find Frobenius solutions about z = 0, we substitute y(z) = > ° ; a,z™*" into the differential equation

o0 o0
Z n+r)(n+r—1Da,z"t" 1+Z n+r)a "+T—|—Z (n+1)a "+T_1+Z—2anx"+r

n=0
Z (n+r+1)(n+r)an+1x"+T+Z n+r)a,z" " + Z (n+r+1 an+1x"+r+z —2a,z™T

n=-—1 n=0 n=-—1 n=0

= [r(r — V)ag — rag)z"* + Z [(n+r+1)(n+r)ans +n+1)an — (n+7+ Dans1 — 2a,) 21",
n=0

The only way the series can vanish for all x in some interval around = = 0 is for each and every coefficient
to vanish. The agreement is that the coefficient of the lowest power of z will always be used to determine
r; that is, the indicial equation is

O=r(r—1)—r=r(r—-2) = r=0,2,
a case 3 situation. When we set » = 0 and equate the remainder of the coefficients to zero,

(2 —n)ay _ (2-n)a,
Mt =t mtDm-1 "=°

When we set n = 0 in this recurrence relation, we obtain a; = —2ag. To substitute n = 1, we must
return to the version of the recurrence relation without division,

2(0)&2 = (1)0,1 - a1 = 0.
This, in turn, implies that all coefficients are zero except as which is arbitrary. In other words, the

solution corresponding to r = 0 is y(z) = az2?. When we work with r = 2, we obtain

—na
n n > 0.

3 2)an, 2)an — 3)ay —2a, =0 n = T a1 =
(n+3)(n+2)an1 + (n+2)an — (n+3)ans1 — 2a = apt1 CFBICES)

This relation implies that all coefficients, except ag vanish. The solution corresponding to r = 2 is

therefore y(x) = aga?.

We solved this differential equation earlier in this section. Substitution of y(z) = Y ; a,z™*" led to

0=2a" | (r* +3r+2)ag + (r* +5r + 6)a1x + Z {I{n+r)(n+7r+3)+2)an + an_2}z"
n=2

By using 72 4+ 3r + 2 = 0 as the indicial equation, we obtained 7 = —1 and r = —2, and the solution

y(z) =

Suppose now that we choose to determine the indicial roots by setting

apcosx + aqsine
3 .

T

0=r?+5r+6=0r+2)(r+3) = r=-2-3.
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With r = -3,
0=(*+3r+2a=(9-9+2)ag = aog=0.
The remaining coefficients imply that

—0p—2

(n—3)(n—4)an+4(n—3)an+an,2+2an:0 — an:m, TLZ2
To set n = 2, we return to the nondivisional form of this relation,
(O)CLQ =—ay = ap=0.
Tteration of the recurrence relation now gives
Rt _ —az _—az ai _ Taq Qa2
BTTy MTFy BT T A TR 5
Thus, from the indicial root » = —3, we obtain a general solution
(z) =277 |a w—x3+x—5+ +a x2—x—4+x6+---
v = ! ol " 4l 2 3l " 5l
L 1 22 2t x> 2P
a1 cosx + assinx
= . .
CHAPTER 18
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2. The Fourier coefficients for this function are
1 [ 1612
= 222 — 1) dx = —2
ao = /0 (2z ) dx 3 ,
1 [ nTT 8L? 1 [ nwr —8L?
anzz/o (222 —1)cosTd ppE bn:f/o (222 —1)sde —

The Fourier series of f (:v) is therefore

8L2 14 Z nﬂ'x 8L%2 | nrmx 8L2 14 812 & 1 nwTr m . NTXx
—— —sin— | = — — —_— — c0S —— — —sin — |.
nmw L 3 2 — n? L n L

The function f(x) and the function to which its Fourier series converges are shown below.

%// )

2L/ 14./ L/ 4L x

4. The Fourier coefficients for this function are

1 [2L 1 [2L 1 2L 6L
aoz—/ 3rdxr =6L, an:—/ 3xcos@da:20, bn:—/ 3xsin@da:———.
0 0 L 0 L

L L L nmw



