EXERCISES 21.3

2. The initial boundary value problem for temperature in the rod is

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =k \frac{\partial^{2} U}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
U_{x}(0, t) & =-Q / \kappa, \quad t>0 \\
U(L, t) & =U_{0}, \quad t>0 \\
U(x, 0) & =U_{0}, \quad 0<x<L
\end{aligned}
$$

We define a new dependent variable $V(x, t)$ by $U(x, t)=V(x, t)+\psi(x)$ where $\psi(x)$ is the solution of the associated steady-state problem

$$
\begin{aligned}
k \frac{d^{2} \psi}{d x^{2}} & =0, \quad 0<x<L \\
\psi^{\prime}(0) & =-Q / \kappa \\
\psi(L) & =U_{0}
\end{aligned}
$$

The differential equation implies that $\psi(x)=A x+B$, and the boundary conditions require

$$
-Q / \kappa=A, \quad U_{0}=A L+B
$$

From these, we obtain the steady-state solution

$$
\psi(x)=\frac{Q}{\kappa}(L-x)+U_{0}
$$

With this choice for $\psi(x)$, the PDE for $V(x, t)$ can be found by substituting $U(x, t)=V(x, t+\psi(x)$ into the PDE for $U(x, t)$,

$$
\frac{\partial}{\partial t}[V(x, t)+\psi(x)]=k \frac{\partial^{2}}{\partial x^{2}}[V(x, t)+\psi(x)]
$$

Because $\psi(x)$ is only a function of x that has a vanishing second derivative, this equation simplifies to

$$
\frac{\partial V}{\partial t}=k \frac{\partial^{2} V}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

Boundary conditions for $V(x, t)$ are obtained from representation $U(x, t)=V(x, t)+\psi(x)$ and boundary conditions $U(x, t)$:

$$
\begin{aligned}
& V_{x}(0, t)=U_{x}(0, t)-\psi^{\prime}(0)=-Q / \kappa+Q / \kappa=0, \quad t>0 \\
& V(L, t)=U(L, t)-\psi(L)=U_{0}-U_{0}=0, \quad t>0
\end{aligned}
$$

Finally, $V(x, t)$ must satisfy the initial condition

$$
V(x, 0)=U(x, 0)-\psi(x)=U_{0}-\frac{Q}{\kappa}(L-x)-U_{0}=-\frac{Q}{\kappa}(L-x), \quad 0<x<L
$$

Separation of variables $V(x, t)=X(x) T(t)$ on the PDE and boundary conditions leads to the ordinary differential equations

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<L, & T^{\prime}+k \lambda T=0, \quad t>0 \\
X^{\prime}(0) & =X(L)=0
\end{array}
$$

The Sturm-Liouville system was discussed in Section 19.2. According to line 4 of Table 19.1, eigenvalues are $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}$ and corresponding eigenfunctions are $X_{n}(x)=\cos \frac{(2 n-1) \pi x}{2 L}$. Since the auxiliary equation for the differential equation in $T(t)$ is $m+k \lambda_{n}=0$, with solution $m=-k \lambda_{n}$, a
general solution of the differential equation is $T(t)=b e^{-k \lambda_{n} t}=b e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)}$. Separated functions are $b e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \cos \frac{(2 n-1) \pi x}{2 L}$. Because the PDE and boundary conditions are linear and homogeneous, we superpose separated functions in the form

$$
V(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \cos \frac{(2 n-1) \pi x}{2 L}
$$

The initial condition on $V(x, t)$ requires the constants b_{n} to satisfy

$$
-\frac{Q}{\kappa}(L-x)=\sum_{n=1}^{\infty} b_{n} \cos \frac{(2 n-1) \pi x}{2 L}, \quad 0<x<L
$$

Consequently, the b_{n} are the coefficients in the eigenfunction expansion of the the function on the left in terms of the eighenfunctions on the right. Thus,

$$
b_{n}=\frac{2}{L} \int_{0}^{L}-\frac{Q}{\kappa}(L-x) \cos \frac{(2 n-1) \pi x}{2 L} d x
$$

Integration by parts leads to

$$
b_{n}=-\frac{8 Q L}{(2 n-1)^{2} \pi^{2} \kappa}
$$

The formal solution of the problem is therefore

$$
\begin{aligned}
U(x, t) & =\frac{Q}{\kappa}(L-x)+U_{0}+V(x, t) \\
& =\frac{Q}{\kappa}(L-x)+U_{0}+\sum_{n=1}^{\infty} \frac{-8 Q L}{(2 n-1)^{2} \pi^{2} \kappa} e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \cos \frac{(2 n-1) \pi x}{2 L} \\
& =\frac{Q}{\kappa}(L-x)+U_{0}-\frac{8 Q L}{\kappa \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \cos \frac{(2 n-1) \pi x}{2 L}
\end{aligned}
$$

4. The initial boundary value problem for temperature in the rod is

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =k \frac{\partial^{2} U}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
U(0, t) & =U_{0}, \quad t>0 \\
U_{x}(L, t) & =Q / \kappa, \quad t>0 \\
U(x, 0) & =U_{0}(1-x / L), \quad 0<x<L
\end{aligned}
$$

We define a new dependent variable $V(x, t)$ by $U(x, t)=V(x, t)+\psi(x)$ where $\psi(x)$ is the solution of the associated steady-state problem

$$
\begin{aligned}
k \frac{d^{2} \psi}{d x^{2}} & =0, \quad 0<x<L \\
\psi(0) & =U_{0} \\
\psi^{\prime}(L) & =Q / \kappa
\end{aligned}
$$

The differential equation implies that $\psi(x)=A x+B$, and the boundary conditions require

$$
U_{0}=B, \quad Q / \kappa=A
$$

From these, we obtain the steady-state solution

$$
\psi(x)=\frac{Q x}{\kappa}+U_{0}
$$

With this choice for $\psi(x)$, the PDE for $V(x, t)$ can be found by substituting $U(x, t)=V(x, t+\psi(x)$ into the PDE for $U(x, t)$,

$$
\frac{\partial}{\partial t}[V(x, t)+\psi(x)]=k \frac{\partial^{2}}{\partial x^{2}}[V(x, t)+\psi(x)]
$$

Because $\psi(x)$ is only a function of x that has a vanishing second derivative, this equation simplifies to

$$
\frac{\partial V}{\partial t}=k \frac{\partial^{2} V}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

Boundary conditions for $V(x, t)$ are obtained from representation $U(x, t)=V(x, t)+\psi(x)$ and boundary conditions $U(x, t)$:

$$
\begin{aligned}
V(0, t) & =U(0, t)-\psi(0)=U_{0}-U_{0}=0, \quad t>0 \\
V_{x}(L, t) & =U_{x}(L, t)-\psi^{\prime}(L)=Q / \kappa-Q / \kappa=0, \quad t>0
\end{aligned}
$$

Finally, $V(x, t)$ must satisfy the initial condition

$$
V(x, 0)=U(x, 0)-\psi(x)=U_{0}\left(1-\frac{x}{L}\right)-\frac{Q x}{\kappa}-U_{0}, \quad 0<x<L
$$

Separation of variables $V(x, t)=X(x) T(t)$ on the PDE and boundary conditions leads to the ordinary differential equations

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<L, & T^{\prime}+k \lambda T=0, \quad t>0 \\
X(0) & =X^{\prime}(L)=0
\end{array}
$$

The Sturm-Liouville system was discussed in Section 19.2. According to line 3 of Table 19.1, eigenvalues are $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}$ and corresponding eigenfunctions are $X_{n}(x)=\sin \frac{(2 n-1) \pi x}{2 L}$. Since the auxiliary equation for the differential equation in $T(t)$ is $m+k \lambda_{n}=0$, with solution $m=-k \lambda_{n}$, a general solution of the differential equation is $T(t)=b e^{-k \lambda_{n} t}=b e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)}$. Separated functions are $b e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \sin \frac{(2 n-1) \pi x}{2 L}$. Because the PDE and boundary conditions are linear and homogeneous, we superpose separated functions in the form

$$
V(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \sin \frac{(2 n-1) \pi x}{2 L}
$$

The initial condition on $V(x, t)$ requires the constants b_{n} to satisfy

$$
U_{0}\left(1-\frac{x}{L}\right)-\frac{Q x}{\kappa}-U_{0}=\sum_{n=1}^{\infty} b_{n} \sin \frac{(2 n-1) \pi x}{2 L}, \quad 0<x<L
$$

Consequently, the b_{n} are the coefficients in the eigenfunction expansion of the the function on the left in terms of the eighenfunctions on the right. Thus,

$$
b_{n}=\frac{2}{L} \int_{0}^{L}\left[U_{0}\left(1-\frac{x}{L}\right)-\frac{Q x}{\kappa}-U_{0}\right] \sin \frac{(2 n-1) \pi x}{2 L} d x
$$

Integration by parts leads to

$$
b_{n}=\frac{8 L(-1)^{n}}{(2 n-1)^{2} \pi^{2}}\left(\frac{U_{0}}{L}+\frac{Q}{\kappa}\right)
$$

The formal solution of problem is therefore

$$
U(x, t)=\frac{Q x}{\kappa}+U_{0}+V(x, t)
$$

$$
\begin{aligned}
& =\frac{Q x}{\kappa}+U_{0}+\sum_{n=1}^{\infty} \frac{8 L(-1)^{n}}{(2 n-1)^{2} \pi^{2}}\left(\frac{U_{0}}{L}+\frac{Q}{\kappa}\right) e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \sin \frac{(2 n-1) \pi x}{2 L} \\
& =\frac{Q x}{\kappa}+U_{0}+\frac{8\left(U_{0} \kappa+Q L\right)}{\kappa \pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)^{2}} e^{-(2 n-1)^{2} \pi^{2} k t /\left(4 L^{2}\right)} \sin \frac{(2 n-1) \pi x}{2 L}
\end{aligned}
$$

6. The initial boundary value problem for $U(x, t)$ is

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =k \frac{\partial^{2} U}{\partial x^{2}}+\frac{k I^{2}}{\kappa A^{2} \sigma}, \quad 0<x<L, \quad t>0 \\
U(0, t) & =100, \quad t>0 \\
U(L, t) & =100, \quad t>0 \\
U(x, 0) & =20, \quad 0<x<L
\end{aligned}
$$

Because the nonhomogeneities are time-independent, we set $U(x, t)=V(x, t)+\psi(x)$, where $\psi(x)$ is the steady-state solution satisfying

$$
\begin{aligned}
k \frac{d^{2} \psi}{d x^{2}}+\frac{k I^{2}}{\kappa A^{2} \sigma} & =0, \quad 0<x<L \\
\psi(0) & =\psi(L)=100
\end{aligned}
$$

Integration of the differential equation gives

$$
\psi(x)=-\frac{I^{2} x^{2}}{2 \kappa A^{2} \sigma}+A x+B
$$

The boundary conditions require

$$
100=\psi(0)=B, \quad 100=\psi(L)=-\frac{I^{2} L^{2}}{2 \kappa A^{2} \sigma}+A L+B
$$

These imply that $A=\frac{I^{2} L}{2 \kappa A^{2} \sigma}$, and $\psi(x)=100+\frac{I^{2} x(L-x)}{2 \kappa A^{2} \sigma}$. The function $V(x, t)$ will satisfy the PDE

$$
\frac{\partial}{\partial t}(V+\psi)=k \frac{\partial^{2}}{\partial x^{2}}(V+\psi)+\frac{k I^{2}}{\kappa A^{2} \sigma} \quad \Longrightarrow \quad \frac{\partial V}{\partial t}=k \frac{\partial^{2} V}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

the boundary conditions

$$
\begin{aligned}
V(0, t) & =U(0, t)-\psi(0)=100-100=0, \quad t>0 \\
V(L, t) & =U(L, t)-\psi(L)=100-100=0, \quad t>0
\end{aligned}
$$

and the initial condition

$$
V(x, 0)=U(x, 0)-\psi(x)=20-\psi(x), \quad 0<x<L
$$

Separated functions $V(x, t)=X(x) T(t)$ satisfy the PDE and boundary conditions if $X(x)$ and $T(t)$ separately satisfy

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<L, & T^{\prime}+k \lambda T=0, \quad t>0 \\
X(0) & =0=X(L) ;
\end{array}
$$

The Sturm-Liouville system was discussed in Section 19.2. According to line 1 of Table 19.1, eigenvalues are $\lambda_{n}=n^{2} \pi^{2} / L^{2}$ and corresponding eigenfunctions are $X_{n}(x)=\sin (n \pi x / L)$. Since the auxiliary equation for the differential equation in $T(t)$ is $m+k \lambda_{n}=0$, with solution $m=-k \lambda_{n}$, a general solution of the differential equation is $T(t)=b e^{-k \lambda_{n} t}=b e^{-n^{2} \pi^{2} k t / L^{2}}$. Separated functions are $b e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}$. Because the PDE and boundary conditions are linear and homogeneous, we superpose separated functions in the form

$$
V(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}
$$

The initial condition requires

$$
20-\psi(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}, \quad 0<x<L
$$

Since this is the eigenfunction expansion of $20-\psi(x)$ in terms of the $\sin (n \pi x / L)$,

$$
b_{n}=\frac{2}{L} \int_{0}^{L}[20-\psi(x)] \sin \frac{n \pi x}{L} d x=-\left(\frac{160}{n \pi}+\frac{2 I^{2} L^{2}}{\kappa A^{2} \sigma \pi^{3} n^{3}}\right)\left[1+(-1)^{n+1}\right]
$$

The formal solution for temperature in the rod is therefore

$$
\begin{aligned}
U(x, t) & =\psi(x)+\sum_{n=1}^{\infty}-\left(\frac{160}{n \pi}+\frac{2 I^{2} L^{2}}{\kappa A^{2} \sigma \pi^{3} n^{3}}\right)\left[1+(-1)^{n+1}\right] e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L} \\
& =100+\frac{I^{2} x(L-x)}{2 \kappa A^{2} \sigma}-\frac{4}{\pi} \sum_{n=1}^{\infty}\left[\frac{80}{2 n-1}+\frac{I^{2} L^{2}}{\kappa A^{2} \sigma \pi^{2}(2 n-1)^{3}}\right] e^{-(2 n-1)^{2} \pi^{2} k t / L^{2}} \sin \frac{(2 n-1) \pi x}{L} .
\end{aligned}
$$

8. The initial boundary value problem for $y(x, t)$ is

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial t^{2}} & =c^{2} \frac{\partial^{2} y}{\partial x^{2}}-\frac{k}{\rho}, \quad 0<x<L, \quad t>0, \quad(k>0) \\
y(0, t) & =0, \quad t>0 \\
y(L, t) & =0, \quad t>0 \\
y(x, 0) & =f(x), \quad 0<x<L \\
y_{t}(x, 0) & =g(x), \quad 0<x<L
\end{aligned}
$$

Because the nonhomogeneity is time-independent, it may be removed by setting $y(x, t)=z(x, t)+\psi(x)$, where $\psi(x)$ is the static deflection defined by

$$
\begin{aligned}
c^{2} \frac{d^{2} \psi}{d x^{2}}-\frac{k}{\rho} & =0, \quad 0<x<L \\
\psi(0) & =\psi(L)=0
\end{aligned}
$$

Integration of the differential equation gives $\psi(x)=\frac{k x^{2}}{2 \rho c^{2}}+A x+B$. The boundary conditions require

$$
0=\psi(0)=B, \quad 0=\psi(L)=\frac{k L^{2}}{2 \rho c^{2}}+A L+B
$$

These imply that $A=-\frac{k L}{2 \rho c^{2}}$, and $\psi(x)=-\frac{k x(L-x)}{2 \rho c^{2}}$. The function $z(x, t)$ will satisfy the PDE

$$
\frac{\partial^{2}}{\partial t^{2}}(z+\psi)=c^{2} \frac{\partial^{2}}{\partial x^{2}}(z+\psi)-\frac{k}{\rho} \quad \Longrightarrow \quad \frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

the boundary conditions

$$
\begin{aligned}
& z(0, t)=y(0, t)-\psi(0)=0, \quad t>0 \\
& z(L, t)=y(L, t)-\psi(L)=0, \quad t>0
\end{aligned}
$$

and the initial conditions

$$
\begin{aligned}
z(x, 0) & =y(x, 0)-\psi(x)=f(x)+\frac{k x(L-x)}{2 \rho c^{2}}, \quad 0<x<L \\
z_{t}(x, 0) & =y_{t}(x, 0)-d \psi / d t=g(x), \quad 0<x<L
\end{aligned}
$$

Separated functions $z(x, t)=X(x) T(t)$ satisfy the PDE and boundary conditions if $X(x)$ and $T(t)$ separately satisfy

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<L, & T^{\prime \prime}+\lambda c^{2} T=0, \quad t>0 \\
X(0) & =0=X(L) ;
\end{array}
$$

The Sturm-Liouville system was discussed in Section 19.2. According to line 1 of Table 19.1, eigenvalues are $\lambda_{n}=n^{2} \pi^{2} / L^{2}$ and corresponding eigenfunctions are $X_{n}(x)=\sin (n \pi x / L)$. Since the auxiliary equation for the differential equation in $T(t)$ is $m^{2}+c^{2} \lambda_{n}=0$, with solution $m= \pm c \sqrt{\lambda_{n}} i= \pm n \pi c i / L$, a general solution of the differential equation is $T(t)=A \cos \frac{n \pi c t}{L}+B \sin \frac{n \pi c t}{L}$. Separated functions are $\left(A \cos \frac{n \pi c t}{L}+B \sin \frac{n \pi c t}{L}\right) \sin \frac{n \pi x}{L}$. Because the PDE and boundary conditions are linear and homogeneous, we superpose separated functions in the form

$$
z(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{L}+B_{n} \sin \frac{n \pi c t}{L}\right) \sin \frac{n \pi x}{L}
$$

The first initial condition requires

$$
f(x)+\frac{k x(L-x)}{2 \rho c^{2}}=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L}, \quad 0<x<L
$$

and therefore the A_{n} are coefficients in the Fourier sine series of the odd, $2 L$-periodic extension of the function on the left,

$$
A_{n}=\frac{2}{L} \int_{0}^{L}\left[f(x)+\frac{k x(L-x)}{2 \rho c^{2}}\right] \sin \frac{n \pi x}{L} d x
$$

The second condition gives

$$
g(x)=\sum_{n=1}^{\infty} \frac{n \pi c}{L} B_{n} \sin \frac{n \pi x}{L}, \quad 0<x<L
$$

and hence the $(n \pi c / L) B_{n}$ are coefficients in the Fourier sine series of the odd, $2 L$-periodic extension of the function $g(x)$,

$$
\frac{n \pi c}{L} B_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x \quad \Longrightarrow \quad B_{n}=\frac{2}{n \pi c} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

The formal solution is therefore

$$
y(x, t)=-\frac{k x(L-x)}{2 \rho c^{2}}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{L}+B_{n} \sin \frac{n \pi c t}{L}\right) \sin \frac{n \pi x}{L}
$$

where A_{n} and B_{n} are defined above.
10. The initial boundary value problem for $y(x, t)$ is

$$
\begin{aligned}
\frac{\partial^{2} y}{\partial t^{2}} & =c^{2} \frac{\partial^{2} y}{\partial x^{2}}-g, \quad 0<x<L, \quad t>0 \\
y(0, t) & =0, \quad t>0 \\
y_{x}(L, t) & =F_{0} / \tau, \quad t>0 \\
y(x, 0) & =0, \quad 0<x<L \\
y_{t}(x, 0) & =0, \quad 0<x<L
\end{aligned}
$$

Because the nonhomogeneities are time-independent, they may be removed by setting $y(x, t)=z(x, t)+$ $\psi(x)$, where $\psi(x)$ is the static deflection defined by

$$
\begin{aligned}
c^{2} \frac{d^{2} \psi}{d x^{2}}-g & =0, \quad 0<x<L \\
\psi(0) & =0 \\
\psi^{\prime}(L) & =F_{0} / \tau
\end{aligned}
$$

Integration of the differential equation gives $\psi(x)=\frac{g x^{2}}{2 c^{2}}+A x+B$. The boundary conditions require

$$
0=\psi(0)=B, \quad \frac{F_{0}}{\tau}=\psi^{\prime}(L)=\frac{g L}{c^{2}}+A
$$

These imply that $A=\frac{F_{0}}{\tau}-\frac{g L}{c^{2}}$, and $\psi(x)=-\frac{g x(x-2 L)}{2 c^{2}}+\frac{F_{0} x}{\tau}$. The function $z(x, t)$ will satisfy the PDE

$$
\frac{\partial^{2}}{\partial t^{2}}(z+\psi)=c^{2} \frac{\partial^{2}}{\partial x^{2}}(z+\psi)-g \quad \Longrightarrow \quad \frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}, \quad 0<x<L, \quad t>0
$$

the boundary conditions

$$
\begin{aligned}
z(0, t) & =y(0, t)-\psi(0)=0, \quad t>0 \\
z_{x}(L, t) & =y_{x}(L, t)-\psi^{\prime}(L)=F_{0} / \tau-F_{0} / \tau=0, \quad t>0
\end{aligned}
$$

and the initial conditions

$$
\begin{aligned}
z(x, 0) & =y(x, 0)-\psi(x)=\frac{g x(x-2 L)}{2 c^{2}}-\frac{F_{0} x}{\tau}, \quad 0<x<L \\
z_{t}(x, 0) & =y_{t}(x, 0)=0, \quad 0<x<L
\end{aligned}
$$

Separated functions $z(x, t)=X(x) T(t)$ satisfy the PDE, the boundary conditions, and the second initial condition if $X(x)$ and $T(t)$ separately satisfy

$$
\begin{aligned}
X^{\prime \prime}+\lambda X & =0, \quad 0<x<L, & T^{\prime \prime}+\lambda c^{2} T & =0, \quad t>0 \\
X(0) & =0=X^{\prime}(L) ; & T^{\prime}(0) & =0
\end{aligned}
$$

The Sturm-Liouville system was discussed in Section 19.2. According to line 3 of Table 19.1, eigenvalues are $\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}$ and corresponding eigenfunctions are $X_{n}(x)=\sin \frac{(2 n-1) \pi x}{2 L}$. Since the auxiliary equation $m^{2}+c^{2} \lambda_{n}=0$ for the differential equation in $T(t)$ has solution $m= \pm c \sqrt{\lambda_{n}} i=\frac{ \pm(2 n-1) \pi c i}{2 L}$, a general solution of the differential equation is $T(t)=A \cos \frac{(2 n-1) \pi c t}{2 L}+B \sin \frac{(2 n-1) \pi c t}{2 L}$. The condition $T^{\prime}(0)=0$ requires $B=0$. Separated functions are $A \cos \frac{(2 n-1) \pi c t}{2 L} \sin \frac{(2 n-1) \pi x}{2 L}$. Because the PDE, boundary conditions, and second initial condition are linear and homogeneous, we superpose separated functions in the form

$$
z(x, t)=\sum_{n=1}^{\infty} A_{n} \cos \frac{(2 n-1) \pi c t}{2 L} \sin \frac{(2 n-1) \pi x}{2 L}
$$

The first initial condition requires

$$
\frac{g x(x-2 L)}{2 c^{2}}-\frac{F_{0} x}{\tau}=\sum_{n=1}^{\infty} A_{n} \sin \frac{(2 n-1) \pi x}{2 L}, \quad 0<x<L
$$

and therefore the A_{n} are coefficients in the eigenfunction expansion of the function on the left,

$$
A_{n}=\frac{2}{L} \int_{0}^{L}\left[\frac{g x(x-2 L)}{2 c^{2}}-\frac{F_{0} x}{\tau}\right] \sin \frac{(2 n-1) \pi x}{2 L} d x
$$

Integration by parts leads to

$$
A_{n}=\frac{-16 L^{2} g}{(2 n-1)^{3} \pi^{2} c^{2}}+\frac{8 L F_{0}(-1)^{n}}{(2 n-1)^{2} \pi^{2} \tau}
$$

The formal solution is therefore

$$
\begin{aligned}
y(x, t) & =-\frac{g x(x-2 L)}{2 c^{2}}+\frac{F_{0} x}{\tau}+\sum_{n=1}^{\infty}\left[\frac{-16 L^{2} g}{(2 n-1)^{3} \pi^{3} c^{2}}+\frac{8 L F_{0}(-1)^{n}}{(2 n-1)^{2} \pi^{2} \tau}\right] \cos \frac{(2 n-1) \pi c t}{2 L} \sin \frac{(2 n-1) \pi x}{2 L} \\
& =-\frac{g x(x-2 L)}{2 c^{2}}+\frac{F_{0} x}{\tau}+\frac{8 L}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{-2 L g}{(2 n-1)^{3} \pi c^{2}}+\frac{F_{0}(-1)^{n}}{(2 n-1)^{2} \tau}\right] \cos \frac{(2 n-1) \pi c t}{2 L} \sin \frac{(2 n-1) \pi x}{2 L} .
\end{aligned}
$$

