Student Name (Print): \qquad

Student Number:

\qquad

Values

7 1. Find the fourth roots of $-1+i$. Express answers in Cartesian form.

Finding the fourth roots is equivalent to solving the equation $z^{4}=1-i$. If we set $z=r e^{\theta i}$, then

$$
r^{4} e^{4 \theta i}=\sqrt{2} e^{3 \pi i / 4}
$$

This implies that

$$
r^{4}=\sqrt{2} \quad \text { and } \quad 4 \theta=\frac{3 \pi}{4}+2 k \pi, \quad k \text { an integer. }
$$

Thus,

$$
r=2^{1 / 8} \quad \text { and } \quad \theta=\frac{3 \pi}{16}+\frac{k \pi}{2}
$$

The fourth roots are therefore

$$
\begin{aligned}
z & =2^{1 / 8} e^{(3 \pi / 16+k \pi / 2) i}=2^{1 / 8}\left[\cos \left(\frac{3 \pi}{16}+\frac{k \pi}{2}\right)+i \sin \left(\frac{3 \pi}{16}+\frac{k \pi}{2}\right)\right] \\
& =2^{1 / 8} \cos \frac{(8 k+3) \pi}{16}+i 2^{1 / 8} \sin \frac{(8 k+3) \pi}{16}, \quad k=0,1,2,3
\end{aligned}
$$

8
2. (a) Draw the region in the z-plane described by the inequality

$$
(\operatorname{Im} z)(\operatorname{Re} z-3)<0
$$

(b) State whether the region is (i) open, (ii) closed, (iii) connected, (iv) bounded, and (v) a domain.
(a) If we set $z=x+y i$, then $y(x-3)<0$. This means that either $y<0$ and $x>3$, or $y>0$ and $x<3$. The region is shown to the right.
(b) The region is open, not closed, not connected, not bounded, and not a domain.

7 3. If $z=x+y i$, show that the bilinear function

$$
w=f(z)=\frac{4}{z+3}
$$

maps the straight line $3 x-4 y+9=0$ in the z-plane to a straight line in the w-plane. What is the equation of the image line in the w-plane?

If we write $w(z+3)=4$, then $z=\frac{4}{w}-3$. We now set $z=x+y i$ and $w=u+v i$,

$$
x+y i=\frac{4}{u+v i}-3=\frac{4(u-v i)}{u^{2}+v^{2}}-3 .
$$

Thus,

$$
x=\frac{4 u}{u^{2}+v^{2}}-3, \quad y=\frac{-4 v}{u^{2}+v^{2}} .
$$

The image of $3 x-4 y+9=0$ is therefore

$$
0=3\left(\frac{4 u}{u^{2}+v^{2}}-3\right)-4\left(\frac{-4 v}{u^{2}+v^{2}}\right)+9=\frac{12 u}{u^{2}+v^{2}}-9+\frac{16 v}{u^{2}+v^{2}}+9 .
$$

If we multiply by $\left(u^{2}+v^{2}\right) / 4$, the image is $0=3 u+4 v$, a straight line.
4. Determine whether the function

$$
f(z)= \begin{cases}\frac{\operatorname{Im}\left(z^{3}\right)}{z^{3}}, & z \neq 0 \\ 0, & z=0\end{cases}
$$

is continuous at $z=0$. Justify your answer.

Since the function is defined at $z=0$, we consider its limit as $z \rightarrow 0, \lim _{z \rightarrow 0} \frac{\operatorname{Im}\left(z^{3}\right)}{z^{3}}$. If we approach $z=0$ along the real axis by setting $z=x$, then

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Im}\left(z^{3}\right)}{z^{3}}=\lim _{x \rightarrow 0} \frac{\operatorname{Im}\left(x^{3}\right)}{x^{3}}=\lim _{x \rightarrow 0} \frac{0}{x^{3}}=0 .
$$

If we approach $z=0$ along the imaginary axis by setting $z=y i$, then

$$
\lim _{z \rightarrow 0} \frac{\operatorname{Im}\left(z^{3}\right)}{z^{3}}=\lim _{y \rightarrow 0} \frac{\operatorname{Im}(y i)^{3}}{(y i)^{3}}=\lim _{y \rightarrow 0} \frac{\left(-y^{3} i\right)}{-y^{3} i}=\lim _{y \rightarrow 0} \frac{-y^{3}}{-y^{3} i}=-i .
$$

Since L depends on the mode of approach, the limit does not exist. The function is therefore discontinuous at $z=0$.

$$
f(z)=\left(x^{3}-3 x y^{2}+\frac{3 x}{x^{2}+y^{2}}\right)+\left(3 x^{2} y-y^{3}-\frac{3 y}{x^{2}+y^{2}}\right) i
$$

is analytic in some domain D. Find an expression for $f^{\prime}(z)$ in D, but do not simplify your answer.

Since the function is analytic,

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x} i=\left[3 x^{2}-3 y^{2}+\frac{\left(x^{2}+y^{2}\right)(3)-3 x(2 x)}{\left(x^{2}+y^{2}\right)^{2}}\right]+\left[6 x y-\frac{3 y(-1)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}\right] i .
$$

5 6. Prove that if $u(x, y)$ and $v(x, y)$ are harmonic conjugates in a domain D, then the product $u(x, y) v(x, y)$ is also harmonic in D.

Since u and v are harmonic conjugates, they have continuous second derivatives that satisfy Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 .
$$

They also satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} .
$$

The function $u v$ will have continuous second derivatives, and

$$
\begin{aligned}
\frac{\partial^{2}(u v)}{\partial x^{2}}+\frac{\partial^{2}(u v)}{\partial y^{2}} & =\left(u \frac{\partial^{2} v}{\partial x^{2}}+2 \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+v \frac{\partial^{2} u}{\partial x^{2}}\right)+\left(u \frac{\partial^{2} v}{\partial y^{2}}+2 \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}+v \frac{\partial^{2} u}{\partial y^{2}}\right) \\
& =u\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+2\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right) \\
& =2\left[\frac{\partial u}{\partial x}\left(-\frac{\partial u}{\partial y}\right)+\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}\right)\right]=0 .
\end{aligned}
$$

Thus, $u v$ is harmonic.

