Student Name (Print): \qquad Student Number: \qquad

Values

4 1. Use definitions of the sine and cosine functions to prove that

$$
\cos 2 z=1-2 \sin ^{2} z
$$

$$
1-2 \sin ^{2} z=1-2\left(\frac{e^{z i}-e^{-z i}}{2 i}\right)^{2}=1-\frac{2}{-4}\left(e^{2 z i}-2+e^{-2 z i}\right)
$$

$$
=1+\frac{1}{2}\left(e^{2 z i}-2+e^{-2 z i}\right)=\frac{1}{2}\left(e^{2 z i}+e^{-2 z i}\right)=\cos 2 z
$$

2. Find all solutions of the equation

$$
e^{2 z}=1+\sqrt{3} i .
$$

Express answers in Cartesian form.

If we take logarithms,

$$
2 z=\log (1+\sqrt{3} i)=\ln |1+\sqrt{3} i|+i \arg (1+\sqrt{3} i) .
$$

Thus,

$$
z=\frac{1}{2}\left[\ln 2+i\left(\frac{\pi}{3}+2 n \pi\right)\right]=\frac{1}{2} \ln 2+\frac{(6 n+1) \pi i}{6} .
$$

3. Calculate $f^{\prime}(i / 3)$ if $f(z)=\sqrt{3 z-1}$. Express answer(s) in exponential form.

Since $f^{\prime}(z)=\frac{3}{2 \sqrt{3 z-1}}$,

$$
f^{\prime}(i / 3)=\frac{3}{2 \sqrt{3(i / 3)-1}}=\frac{3}{2 \sqrt{-1+i}}=\frac{3}{2 \sqrt{\sqrt{2} e^{3 \pi i / 4}}}=\frac{3}{2^{5 / 4} e^{3 \pi i / 8}}=\frac{3}{2^{5 / 4}} e^{-3 \pi i / 8}
$$

4. (a) Show that the zeros of the function $f(z)=\tanh (3 z+1)$ are $z=(-1+n \pi i) / 3$, where n is an integer.
(b) Calculate $f^{\prime}(z)$ at the zeros in part (a) simplified as much as possible.
(c) What are the orders of the zeros in part (a)? Justify you answer.
(a) Since $\tanh (3 z+1)=\frac{\sinh (3 z+1)}{\cosh (3 z+1)}$, zeros of $\tanh (3 z+1)$ occur at the zeros of $\sinh (3 z+1)$. Since $\sinh z$ has zeros $n \pi i$, where n is an integer, zeros of $\tanh (3 z+1)$ are given by

$$
3 z+1=n \pi i \quad \text { or } \quad z=\frac{-1+n \pi i}{3} .
$$

(b) Since $f^{\prime}(z)=3 \operatorname{sech}^{2}(3 z+1)$,

$$
f^{\prime}\left(\frac{-1+n \pi i}{3}\right)=3 \operatorname{sech}^{2}(n \pi i)=\frac{3}{\cosh ^{2}(n \pi i)}=\frac{3}{[\cos (n \pi)]^{2}}=\frac{3}{\left[(-1)^{n}\right]^{2}}=3 .
$$

(c) Since $f(z)$ is analytic at its zeros, and $f((-1+n \pi i) / 3)=0$, but $f^{\prime}((-1+n \pi i) / 3) \neq 0$, the zeros are of order 1.
5. Evaluate the contour integral

$$
\oint_{C}\left(z^{3}+4 z+1\right) d z,
$$

where C is the curve $|z|=4$.

Since $z^{3}+4 z+1$ has indefinite integral $z^{4} / 4+2 z^{2}+z+C$ in the whole complex plane, the contour interal is independent of path in the plane. Because the curve is closed, the contour integal has value 0 .

8 6. Evaluate the contour integral

$$
\int_{C} \frac{1}{z-4} d z
$$

where C is the curve in the figure to the right.

An antiderivative of $1 /(z-4)$ in the domain shown is $\log _{0}(z-4)$. Hence

$$
\begin{aligned}
\int_{C} \frac{1}{z-4} d z & =\left\{\log _{0}(z-4)\right\}_{1}^{i}=\log _{0}(i-4)-\log _{0}(-3) \\
& =[\ln |i-4|+i \arg (i-4)]-[\ln |-3|+i \arg (-3)] \\
& =\ln \sqrt{17}+i\left[\pi-\operatorname{Tan}^{-1}(1 / 4)\right]-\ln 3-i(\pi) \\
& =\left(\frac{1}{2} \ln 17-\ln 3\right)-i \operatorname{Tan}^{-1}(1 / 4) .
\end{aligned}
$$

