Values

1. The function $f(x), 0 \leq x \leq 2$ in the left figure below is to be represented in the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

for some choice of L and constants a_{n}.
(a) What is the value of L ?
(b) Find a_{0}.
(c) Set up, but do NOT evaluate, definite integrals for the values of the a_{n}, for $n>0$.
(d) In the right figure for $-4 \leq x \leq 4$, draw the function to which the series in part (a) converges.

(a) $L=2$
(b) $a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{1} 2 x d x+\int_{1}^{2}-d x=\left\{x^{2}\right\}_{0}^{1}-\{x\}_{1}^{2}=0$
(c) $a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \frac{n \pi x}{2} d x=\int_{0}^{1} 2 x \cos \frac{n \pi x}{2} d x+\int_{1}^{2}-\cos \frac{n \pi x}{2} d x$
(d) The graph is shown above.
2. A cylindrical rod of length L and insulated sides is placed along the x-axis between $x=0$ and $x=L$. At time $t=0$, it is at temperature $0^{\circ} \mathrm{C}$ throughout. For time $t>0$, its ends continue to be held at temperature $0^{\circ} \mathrm{C}$. At every point in the rod, heat is generated at the constant rate of $g(x, t)=1$. Find the temperature in the rod for $0<x<L$ and $t>0$.

The initial boundary value problem for temperature $U(x, t)$ is

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =k \frac{\partial^{2} U}{\partial x^{2}}+\frac{k}{\kappa}, \quad 0<x<L, \quad t>0 \\
U(0, t) & =0, \quad t>0 \\
U(L, t) & =0, \quad t>0 \\
U(x, 0) & =0, \quad 0<x<L
\end{aligned}
$$

Because the nonhomogeneity is time-independent, we set $U(x, t)=V(x, t)+\psi(x)$, where $\psi(x)$ is the steady-state solution, satisfying

$$
\begin{aligned}
0 & =k \frac{d^{2} \psi}{d x^{2}}+\frac{k}{\kappa}, \quad 0<x<L \\
\psi(0) & =0=\psi(L)
\end{aligned}
$$

A general solution of the differential equation is $\psi(x)=-\frac{x^{2}}{2 \kappa}+A x+B$. The boundary conditions require

$$
0=\psi(0)=B, \quad 0=\psi(L)=-\frac{L^{2}}{2 \kappa}+A L
$$

Thus, $\psi(x)=-\frac{x^{2}}{2 \kappa}+\frac{L x}{2 \kappa}=\frac{x(L-x)}{2 \kappa}$. The function $V(x, t)$ satisfies the homogeneous problem

$$
\begin{aligned}
\frac{\partial V}{\partial t} & =k \frac{\partial^{2} V}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
V(0, t) & =0, \quad t>0 \\
V(L, t) & =0, \quad t>0 \\
V(x, 0) & =-\psi(x), \quad 0<x<L
\end{aligned}
$$

We search for separated functions $V(x, t)=X(x) T(t)$ satisfying the PDE and the boundary conditions. The PDE requires

$$
X T^{\prime}=k X^{\prime \prime} T \quad \Longrightarrow \quad \frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{k T}=\alpha
$$

Thus, $X(x)$ and $T(t)$ satisfy the ODEs

$$
X^{\prime \prime}-\alpha X=0 \quad \text { and } \quad T^{\prime}-k \alpha T=0
$$

The boundary conditions require $X(0)=0$ and $X(L)=0$. If we set $\alpha=-\lambda^{2}$, then $X(x)$ satisfies

$$
\begin{aligned}
X^{\prime \prime}+\lambda^{2} X & =0, \quad 0<x<L \\
X(0) & =0=X(L)
\end{aligned}
$$

A general solution of the differential equation is $X(x)=A \cos \lambda x+B \sin \lambda x$. The boundary conditions require

$$
0=X(0)=A, \quad 0=X(L)=B \sin \lambda L
$$

Since $B \neq 0$, we set $\sin \lambda L=0$, in which case $\lambda L=n \pi$, where n is an integer. Thus, values of λ are $\lambda_{n}=n \pi / L$, and $X(x)=B \sin (n \pi x / L)$. Correspondingly, $T(t)=C e^{-n^{2} \pi^{2} k t / L^{2}}$. Separated functions are therefore

$$
X(x) T(t)=b e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}
$$

Because the PDE and boundary conditions are linear and homogeneous, we superpose separated functions and take

$$
V(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L}
$$

The iniitial condition requires

$$
-\psi(x)=-\frac{x(L-x)}{2 \kappa}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}, \quad 0<x<L .
$$

The b_{n} are therefore coefficients in the Fourier sine series of the odd, $2 L$-periodic extension of $-\psi(x)$; that is,

$$
b_{n}=\frac{2}{L} \int_{0}^{L}-\frac{x(L-x)}{2 \kappa} \sin \frac{n \pi x}{L} d x .
$$

Integration by parts leads to

$$
b_{n}=\frac{2 L^{2}\left[(-1)^{n}-1\right]}{n^{3} \pi^{3} \kappa} .
$$

Thus,

$$
\begin{aligned}
V(x, t) & =\sum_{n=1}^{\infty} \frac{2 L^{2}\left[(-1)^{n}-1\right]}{n^{3} \pi^{3} \kappa} e^{-n^{2} \pi^{2} k t / L^{2}} \sin \frac{n \pi x}{L} \\
& =-\frac{4 L^{2}}{\pi^{3} \kappa} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} e^{-(2 n-1)^{2} \pi^{2} k t / L^{2}} \sin \frac{(2 n-1) \pi x}{L} .
\end{aligned}
$$

Finally, $U(x, t)=V(x, t)+\psi(x)$.

