
Problems

5.1 A computer program was run to model the one-dimensional problem of steady heat
conduction in a bar with internal energy generation shown in Problem Figure 5.1.

Problem Figure 5.1: Schematic for Problem 5.1.

The computer code used three control volumes with uniform grid spacing as shown
in Problem Figure 5.2.

and produced the following results that you must check:

T1 = 320.46 [K]
T2 = 358.19 [K]
T3 = 392.72 [K]



Problem Figure 5.2: Grid and node nomenclature for Problem 5.1.

(a) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volumes for T1 and T2.

(b) Using energy conservation in the control volume for T3, what value for TR
should the program have produced?

(c) According to an overall energy balance what should the value of TR be?

5.2 A computer program was run to model the one-dimensional problem of steady heat
conduction in a bar with internal energy generation using three control volumes
with uniform grid spacing as shown schematically in Problem Figure 5.3.

Problem Figure 5.3: Schematic for Problem 5.2.

The computer code produced the following results that you must check:

T1 = 512.0 [K]
T2 = 528.0 [K]
T3 = 536.0 [K]

(a) By inspection, what should the value of TR be?

(b) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T3.

(c) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T2.

(d) Using energy conservation in the control volume for T1, what value for TL
should the program have produced?



(e) According to an overall energy balance what should the value of TL be?

5.3 A computer program was run to model the one-dimensional problem of steady heat
conduction in a bar with internal energy generation (in only the control volume for
T2) using three control volumes with uniform grid spacing as shown in Problem Fig-
ure 5.4.

Problem Figure 5.4: Schematic for Problem 5.3.

The computer code produced the following results that you must check:

T1 = 393.17 [K]
T2 = 396.83 [K]
T3 = 399.00 [K]

(a) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T3.

(b) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T2.

(c) Using energy conservation in the control volume for T1, what value for TL
should the program have produced?

(d) According to an overall energy balance what should the value of TL be?

(e) What should the value of TR be?

5.4 A computer program was run to model the one-dimensional problem of steady heat
conduction in a bar with internal energy generation. The governing equation for this
model was

k
d2T

dx2
+ Q̇′′′ = 0

The energy generation varies throughout the bar as specified in the diagram below.
The program used three control volumes with uniform grid spacing as shown in
Problem Figure 5.5.

The computer code produced the following results that you must check:
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Problem Figure 5.5: Schematic for Problem 5.4.

T1 = 420.17 [K] T2 = 427.12 [K] T3 = 425.06 [K]

(a) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T2.

(b) Using energy conservation in the control volume for T1, what value for TL
should the program have produced?

(c) Using energy conservation in the control volume for T3, what value for TR
should the program have produced?

(d) Using the values of TL and TR calculated above, demonstrate an overall energy
balance.

5.5 A computer program was run to model a one-dimensional problem of steady-state
heat conduction in a bar with non-uniform internal energy generation. The govern-
ing equation for this model was:

k
d2T

dx2
+ Q̇′′′ = 0 (P5-1)

The program used three control volumes with uniform grid spacing and the con-
ditions shown in Problem Figure 5.6. The energy generation varies throughout the
bar as specified in the figure.
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Problem Figure 5.6: Schematic for Problem 5.5.

The computer code, based on the finite volume method described in this course,
produced the following results:

T1 = 463.33 [K] T2 = 483.33 [K] T3 = 490.00 [K]

Perform the calculations below. Be consistent with the finite volume method.



(a) Using the solution provided by the computer code, demonstrate that energy is
conserved in the control volume for T2.

(b) Using energy conservation in the control volume for T1, what value for TL
should the program have produced?

(c) Using energy conservation in the control volume for T3, what value for TR
should the program have produced?

5.6 Problem Figure 5.7 shows the control volumes of a grid in a part of a larger domain
in a composite solid material in which there is a temperature distribution due to
two-dimensional steady conduction heat transfer. There are no volumetric energy
generation sources.
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Problem Figure 5.7: Schematic for Problem 5.6.

(a) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form

aPTP = aWTW + aETE + aSTS + aNTN + bP

Use the properties and the uniform grid spacing shown in Problem Figure 5.7.

(b) Using the algebraic equation and coefficients from part (a), calculate a “new
iteration” value of TP given the following values for the neighbouring nodal
temperatures.

TW = 300 [K] TE = 400 [K] TS = 320 [K] TN = 420 [K]

5.7 Problem Figure 5.8 shows the control volumes of a grid in a part of a larger domain
in a composite solid material in which there is a temperature distribution due to



Problem Figure 5.8: Nomenclature for Problem 5.7.

two-dimensional steady conduction heat transfer. There are no volumetric energy
generation sources.

In the questions below, use the properties and the uniform grid spacing shown in
Problem Figure 5.8.

(a) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form

aPTP = aWTW + aETE + aSTS + aNTN + bP

for the control volume for T6 (i.e. TP = T6).

(b) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form

aPTP = aWTW + aETE + aSTS + aNTN + bP

for the control volume for T7 (i.e. TP = T7).

(c) Using the algebraic equations and coefficients from parts (a) and (b) and the
old iteration values of the nodal temperatures given below:

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
360 400 500 550 320 320 380 500 300 320 360 400

form two equations for the two unknowns (new iteration values) T6 and T7.
(Note that all other nodal values are held constant at the old iteration values).

(d) Solve for the new values of T6 and T7 simultaneously using the equations from
part (c). Use substitution.

5.8 Problem Figure 5.9 shows the control volumes of a grid in a part of a larger domain
in a composite solid material in which there is a temperature distribution due to
two-dimensional steady-state conduction heat transfer. You may assume no internal
energy generation and a unit depth.
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Problem Figure 5.9: Composite material for Problem 5.8.

Use the grid dimensions shown in Problem Figure 5.9 and the grid-related data
given in Problem Table 5.1. The values of the thermal conductivity for the three ma-
terials shown in the figure are kA = 16 [W/m·K], kB = 4 [W/m·K], and kC = 64 [W/m·
K].

C.V. (δx)e fe (δx)w fw (δy)n fn (δy)s fs
T6 0.30 0.33333 0.60 0.33333 0.40 0.62500 0.30 0.50000

T7 0.20 0.50000 0.30 0.33333 0.40 0.62500 0.30 0.50000

Problem Table 5.1: Table of grid dimensions and weights for for Problem 5.8.

(a) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form

aPTP = aWTW + aETE + aSTS + aNTN + bP (P5-2)

for the control volume for T6 (i.e. TP = T6). Use the coefficients for the Fi-
nite Volume Method described in this course. You do not need to derive the
equations for the coefficients.

(b) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form of Equation (P5-2) for the control volume for T7 (i.e. TP =
T7).

(c) Use the algebraic equations from parts (a) and (b) and the old iteration values
of the nodal temperatures given below to form two equations for the two un-
knowns (new iteration values of) T6 and T7. For the purposes of this question
hold all other nodal values constant at the old iteration values.

T9 350 [K] T10 380 [K] T11 410 [K] T12 440 [K]

T5 320 [K] T6 ?? T7 ?? T8 370 [K]

T1 300 [K] T2 310 [K] T3 340 [K] T4 360 [K]

(d) Solve for the new values of T6 and T7 simultaneously using the equations from
part (c).

 0.2 0.2



5.9 Problem Figure 5.10 shows the control volumes of a uniformly-spaced grid in a
composite solid material. In this domain, temperatures are specified as TL=500 [K]
on the left boundary and TR=300 [K] on the right boundary; the bottom bound-
ary is insulated; and the top boundary is exposed to convection heat transfer with
h∞=40 [W/m2 ·K] and T∞=400 [K]. Assume two-dimensional steady-state conduc-
tion heat transfer with no internal energy generation and a unit depth.
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Problem Figure 5.10: Composite material schematic for Problem 5.9.

The grid dimensions are shown in Problem Figure 5.10. The values of the ther-
mal conductivity for the three materials shown in the figure are kA = 2 [W/m · K],
kB = 48 [W/m · K], and kC = 12 [W/m · K]. Use the harmonic mean to calculate
interface thermal conductivity as necessary.

(a) Calculate the values of the coefficients aP , aW , aE , aS , aN , and bP of the algebraic
equation in the form

aPTP = aWTW + aETE + aSTS + aNTN + bP (P5-3)

for the control volumes for T1 and T2. Use the coefficients for the Finite Volume
Method described in this course. You do not need to use integration to derive
the equations for the coefficients.

(b) Use the algebraic equations from part (a) and the known nodal temperatures
given in Problem Table 5.2 to form two equations for the two unknowns (T1
and T2).

(c) Solve simultaneously for the values of T1 and T2 using the equations from part
(c).

(d) Form the algebraic equation for T12 and determine its value.

T9 416.12 [K] T10 383.16 [K] T11 366.69 [K] T12 ??

T5 425.70 [K] T6 382.06 [K] T7 360.79 [K] T8 330.28 [K]

T1 ?? T2 ?? T3 359.00 [K] T4 328.60 [K]

Problem Table 5.2: Nodal values for Problem 5.9.



5.10 A finite volume discretization was used for one-dimensional steady conduction
with a source term:

k
d2T

dx2
+ Q̇′′′ = 0

in the domain shown in Problem Figure 5.11. Note that in this problem, there is
uniform grid spacing and the nodes to be used to prescribe the boundary conditions
are on the boundary.

t

T2

✑✑✸
A

tTR

q̇′′L = 1000 [W/m2]

Q̇′′′
1 = Q̇′′′

2 = Q̇′′′
3 = 555 [W/m3]

h∞ = 70 [W/m2 ·K]

T∞ = 300 [K]

tTL t

T1
t

T3

A = 1 [m2] k = 35 [W/m ·K] L = 0.6[m]

h∞

T∞

Q̇′′′
1 Q̇′′′

2 Q̇′′′
3

✲
q̇′′L

Problem Figure 5.11: Schematic for Problem 5.10.

For this problem, the algebraic equations for the three nodal temperatures before
modification to include boundary conditions are:

525 T1 = 350 TL + 175 T2 + 111 (P5-4)

350 T2 = 175 T1 + 175 T3 + 111 (P5-5)

525 T3 = 175 T2 + 350 TR + 111 (P5-6)

In order to prescribe the boundary equations given, the equations for the boundary
nodes shown in the diagram are:

TL = T1 +
q̇′′L ∆x

2 k
(P5-7)

TR =
1(

1 +
h∞ ∆x

2 k

) T3 +

(
h∞ ∆x

2 k

)

(
1 +

h∞ ∆x

2 k

) T∞ (P5-8)

(a) Using the general boundary node equation for TL given (Equation (P5-7) above),
derive the boundary equation for TL for this particular problem (i.e. substitute
the values from the problem definition).

(b) Derive the modified algebraic equation for T1 by absorbing the left boundary
node equation derived in part (a).

(c) Using the general boundary node equation for TR given (Equation (P5-8) above),
derive the boundary equation for TR for this particular problem (i.e. substitute
the values from the problem definition).



(d) Derive the modified algebraic equation for T3 by absorbing the right boundary
node equation derived in part (c).

(e) Write out the new set of algebraic equations for T1, T2, and T3 in matrix format.
Solve the set of equations for T1, T2, and T3.

5.11 A finite volume discretization method was used for one-dimensional steady con-
duction with a source term, for which the governing equation is:

d

dx

(
k
dT

dx

)
+ Q̇′′′ = 0 (P5-9)

The governing equation was integrated over the typical control volume shown in
Problem Figure 5.12 and the following discretization equation for a typical node
was obtained:

[
kwAw

(δx)w
+
keAe

(δx)e

]
TP =

[
kwAw

(δx)w

]
TW +

[
keAe

(δx)e

]
TE + Q̇′′′(A)p(∆x)p (P5-10)
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Problem Figure 5.12: Typical control volume for discretization for Problem 5.11.

The objective of this question is to derive and solve the set of algebraic equations
needed to determine T1, T2, and T3 for the problem shown in Problem Figure 5.13.

s

T2

✑✑✸
A

sTR

q̇′′R = 2000 [W/m2]

Q̇′′′
1 = Q̇′′′

2 = Q̇′′′
3 = 1110 [W/m3]

TL = 400 [K]

sTL s

T1
s

T3

A = 1 [m2] k = 70 [W/m ·K] L = 0.6[m]

Q̇′′′
1 Q̇′′′

2 Q̇′′′
3

q̇′′R
✛

Problem Figure 5.13: One-dimensional steady conduction with a source term problem for
Problem 5.11.

(a) Apply Equation (P5-10) three times (once at each of the three control volumes:
i.e. TP = T1, TP = T2, and TP = T3) to produce the set of 3 equations for T1, T2,
and T3.

Substitute properties, geometry, and source terms values as needed but leave
TL and TR as symbols in the equations. Summarize the equation set in the form:

[aP ]1 T1 = [aW ]1 TL + [aE ]1 T2 + [bP ]1



[aP ]2 T2 = [aW ]2 T1 + [aE]2 T3 + [bP ]2

[aP ]3 T3 = [aW ]3 T2 + [aE]3 TR + [bP ]3

where the [aP ],[aW ], [aE ], and [bP ] coefficients will have been calculated using
the problem definition values.

The value of TL will be substituted later and an equation for TR will be derived
next.

(b) The equation for TR (from the boundary condition) is:

TR = T3 +
q̇′′R ∆x

2 k
(P5-11)

Substitute values for q̇′′R, ∆x, and k to obtain the specific equation for TR for the
problem in Problem Figure 5.13.

(c) Substitute for TL and TR (using the known value for TL from the boundary
condition and the equation from part (b) for TR, respectively) into your set of
equations from part (a). These will then be the modified algebraic equations
after absorbing the boundary conditions. Solve the set of equations for T1, T2,
and T3.

(d) Using the solution from part (c), demonstrate that your discrete (numerical)
solution obeys overall energy conservation for the domain defined in Prob-
lem Figure 5.13.

5.12 This question examines transient two-dimensional conduction with no source term.
The governing differential equation is:

∂

∂t
(ρ T ) =

∂

∂x

(
Γ
∂T

∂x

)
+

∂

∂y

(
Γ
∂T

∂y

)

where Γ =
k

Cp

, k is the thermal conductivity, ρ is the density, and Cp is the specific

heat.

(a) Using the finite volume approach presented in this course, integrate the differ-
ential equation over time and space to derive expressions for the coefficients
aP , aE , aS , aN , aS , and bP of a discretization equation in the form

aPT
n
P = aET

n
E + aWT

n
W + aNT

n
N + aST

n
S + bP

for the Fully Explicit scheme only (corresponding to ft = 0). Use the nomen-
clature in Problem Figure 5.14, use T n and T o to indicate “new” and “old” time
step values of T , and include the assumptions and approximations you make
in the derivation. You may assume uniform grid spacing and unit depth, but
you may not assume that ∆x and ∆y are equal. Note that you do not need to
do the general time-weighting derivation; you may derive the Fully Explicit
scheme directly.
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Problem Figure 5.14: Typical control volume for discretization for Problem 5.12.
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Problem Figure 5.15: Two-dimensional unsteady conduction with no source term prob-
lem for Problem 5.12.

(b) Now, consider the domain shown in Problem Figure 5.15.

Using the discretization equation from part (a), substitute the relevant values
from the domain defined above and write out the algebraic equation for T n

P .
Leave the time step, ∆t, and the nodal temperatures from the previous time
step as variables in this equation.

(c) The values of the nodal temperatures at and around TP from the previous time
step are known to be

T o
P = 375 [K] T o

W = 400 [K] T o
E = 450 [K] T o

S = 350 [K] T o
N = 300 [K]

Using the algebraic equation from part (b), calculate the value of T n
P after one

time step (∆t), for ∆t = 2 minutes.

(d) What is the maximum time step that may be used in the calculation of T n
P for

this specific problem?

5.13 A bar made of AISI 304 stainless steel of length L is insulated along its length and
held at TL on one end and TR on the opposite end as shown in Problem Figure 5.16.
The cross-sectional area of the rod is Ac and there are no internal energy sources.
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Problem Figure 5.16: AISI 304 Stainless steel bar schematic for Problem 5.13.

The objective of the analysis in this problem is to formulate and to perform a numer-
ical solution for the temperature distribution (using two control volumes) including
the effect of thermal conductivity variation with temperature. The case of constant
thermal conductivity will be solved and used as a basis for comparison.

A correlation for the thermal conductivity variation with temperature of AISI 304
stainless steel is

k (T ) = Ck T
m (P5-12)

where
Ck = 1.2073 (P5-13)

m = 0.441 (P5-14)

k is in [W/m ·K], and T is in absolute temperature. The correlation is valid for the
range: 100 [K] ≤ T ≤ 1000 [K].

(a) For this steady, one-dimensional heat conduction problem, show that the alge-
braic equations for T1 and T2 can be simplified, in this case, to:

(2 kL + k12) T1 − (k12) T2 = (2 kL) TL (P5-15)

− (k12) T1 + (2 kR + k12) T2 = (2 kR) TR (P5-16)

where kL, kR, k1, k2, and k12 are the values of the thermal conductivity at the
left boundary, the right boundary, the T1 node, the T2 node, and the interface
between the T1 and T2 control volumes, respectively.

(b) For the values of L = 1.87 [m], Ac = 0.05 [m2], TL = 100 [K], and TR = 900 [K],
solve for T1 and T2 using the equations from part (a) (Equations (P5-15) and
(P5-16)) for the case of constant thermal conductivity. In this case, use a value
of 18.7 [W/m ·K] for all k values (i.e. kL=kR=k1=k2=k12=18.7 [W/m ·K]).

(c) Compare the T1 and T2 values calculated in part (b) with the analytical solution
for T (x) for that case.



(d) Now set up the equations to solve the non-linear problem when k varies with
temperature as given in Equation (P5-12). In this case use:

kL = k1 = k (T1) (P5-17)

kR = k2 = k (T2) (P5-18)

and the harmonic mean to calculate k12. Show that the linearized equations for
T1 and T2 are, in this case:
[
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1 )
m +
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m (T ∗
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m

{ (T ∗
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(P5-19)

−
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m
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]
T2 = (T ∗

2 )
m TR

(P5-20)
where T ∗

1 and T ∗
2 are the previous (or guessed) values of T1 and T2.

(e) Solve for T1 and T2 using Equations (P5-19) and (P5-20). Use the solution from
part (b) as the intial guess for T1 and T2. In the solution procedure, do a direct
solution of the linearized equations for T1 and T2 for each iteration. Do two full
iterations (i.e. two solutions of the linearized equations).

5.14 The transient temperature field in the plane wall shown in Problem Figure 5.17(a)
is to be computed using the Finite Volume method described in this course. Us-
ing symmetry, half the domain is modelled with two control volumes as shown in
Problem Figure 5.17(b). The governing equation that applies in this case is:

∂

∂t
(ρT ) =

∂

∂x

(
k

Cp

∂T

∂x

)
(P5-21)

The values of relevant problem parameters are given in Problem Table 5.3.
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Problem Figure 5.17: Problem definition for Problem 5.14.

This question requires that the appropriate algebraic equations for T n
1 and T n

2 be
determined for both the Fully Implicit and the Fully Explicit approaches, and that
calculations of the nodal temperatures be made at 3 time steps for both approaches.

Note that for the first time step T o
1 = T o

2 = T o
L = T o

R = Ti, where Ti is the uniform ini-
tial temperature at time zero. Note also for parts (c) and (e) below that in the control
volume for T1: TW = TL and (δx)w = ∆x/2, and that in the control volume for T2:



Parameter Value Parameter Value

k 58.5 [W/m ·K] h∞ 500 [W/m2 ·K]

ρ 7800 [kg/m3] T∞ 333 [K]

Cp 390 [J/kg ·K] Ti 253 [K]

L 0.06 [m]

A 1 [m2] ∆t 30 [s]

∆x 0.015 [m]

Problem Table 5.3: Table of parameter values for Problem 5.14.

TE = TR and (δx)e = ∆x/2. Finally, in all parts below that require calculations, keep
5 significant figures.

(a) Show that the boundary condition on the left leads to the following equation:

TL = T1 (P5-22)

(b) Show that the boundary condition on the right leads to the following equation:

TR =
2

(2 + Bi)
T2 +

Bi

(2 + Bi)
T∞ (P5-23)

where Bi =
h∞ ∆x

k
.

(c) Starting from Equations (5.124) to (5.126), using the conditions given in Ta-
ble 5.3, and absorbing the boundary condition equations, show that the equa-
tions for T n

1 and T n
2 for the Fully Implicit approach are Equations (P5-24) and

(P5-25) below. You may begin with an already simplified version of the starting
equations.

13.9 T n
1 = 10 T n

2 + 3.9 T o
1 (P5-24)

15.105 T n
2 = 10 T n

1 + 3.9 T o
2 + 401.20 (P5-25)

(d) Perform the calculation of T n
1 and T n

2 for 3 time steps using a simultaneous
solution of Equations (P5-24) and (P5-25) (i.e. calculate T1 and T2 at times of
30, 60, and 90 seconds using the Fully Implicit approach). To perform the si-
multaneous solution, you may use Equations (P5-26) and (P5-27) below (which
come from substitution of Equation (P5-24) into (P5-25) and re-writing Equa-
tion (P5-24)).

T n
2 =

(39 T o
1 + 54.210 T o

2 + 5576.7)

109.96
(P5-26)

T n
1 =

(10 T n
2 + 3.9 T o

1 )

13.9
(P5-27)

(e) Starting from Equations (5.124) to (5.126), using the conditions given in Prob-
lem Table 5.3, and leaving the boundary nodes explicit in the nodal temper-
ature equations (i.e. do not absorb them), show that the equations for T n

1 and
T n
2 for the Fully Explicit approach are Equations (P5-28) and (P5-29) below.

3.9 T n
1 = 20 T o

L + 10 T o
2 − 26.1 T o

1 (P5-28)



3.9 T n
2 = 10 T o

1 + 20 T o
R − 26.1 T o

2 (P5-29)

(f) Perform the calculation of T n
1 and T n

2 for 3 time steps using Equations (P5-28)
and (P5-29) (i.e. calculate T1 and T2 at times of 30, 60, and 90 seconds using the
Fully Explicit approach). Make sure to update the boundary node values after
the calculation of T n

1 and T n
2 but before the next time step. The boundary node

equations are:
T n
L = T n

1 (P5-30)

T n
R = 0.93976 T n

2 + 20.060 (P5-31)

(g) Explain the difference between the values calculated for T1 and T2 at a time of
90 seconds in parts (d) and (f).

5.15 Given the following differential equation for T with positive constant a:

a
d2T

dx2
+ S = 0

(a) By performing the integration of the differential equation over a typical con-
trol volume shown in Problem Figure 5.18 and using the nomenclature given,
derive expressions for the coefficients aP , aW , aE , and bP of a discretization
equation in the form

aPTP = aWTW + aETE + bP

You may assume constant cross-sectional area, uniform grid spacing and con-
stant source term S.

Problem Figure 5.18: Nomenclature for Problem 5.15.

(b) Now examine the case when S is a volumetric energy source term which is a
function of T given by

S = b (T 4
∞ − T

4)

where b and T∞ are positive constants.

Derive the coefficients Sc and Sp for the linearization of S in the form:

S = Sc + SpTP

using the Newton-Raphson linearization

S = S∗ +
∂S

∂T

∣∣∣∣
T ∗

P

(TP − T
∗
P )



Use this new linearization to redo the integration of S. Use the results of the
new integration of S to derive the new coefficients of the general discretization
equation.

5.16 Given the following differential equation for T with positive constant a:

a
d2T

dx2
+ S = 0

(a) By performing the integration of the differential equation over a typical con-
trol volume shown in Problem Figure 5.19 and using the nomenclature given,
derive expressions for the coefficients aP , aW , aE , and bP of a discretization
equation in the form

aPTP = aWTW + aETE + bP

You may assume constant cross-sectional area, uniform grid spacing and con-
stant source term S.

Problem Figure 5.19: Nomenclature for Problem 5.16.

(b) Now examine the case when S is a volumetric energy source term which is a
function of T given by

S = −b (T − T∞)3

where b and T∞ are positive constants.

Derive the coefficients Sc and Sp for the linearization of S in the form:

S = Sc + SpTP

using the Newton-Raphson linearization

S = S∗ +
∂S

∂T

∣∣∣∣
T ∗

P

(TP − T
∗
P )

Use this new linearization to redo the integration of S. Use the results of the
new integration of S to derive the new coefficients of the general discretization
equation.

5.17 Given the following differential equation for T :



d2T

dx2
+ Ṡ ′′′ = 0

with a source term that is a non-linear function of T . The source term is linearized
using the following equation:

Ṡ ′′′ = Sc + SpT

(a) By performing the integration of the differential equation over a typical con-
trol volume shown in Problem Figure 5.20 and using the nomenclature given,
derive expressions for the coefficients aP , aW , aE , and bP of a discretization
equation in the form:

aPTP = aWTW + aETE + bP

You may assume constant cross-sectional area, uniform grid spacing, and a
step-wise profile when integrating the source term.

✉ ✉✉

TP TE

w e

TW

✛
✛

∆xP

(δx)w (δx)e

A

✲✛
✲

✲

✑
✑✑✰

Problem Figure 5.20: Schematic for Problem 5.17.

(b) Now examine the specific case when Ṡ ′′′ is a volumetric energy source term
which is a function of T given by

Ṡ ′′′ = − C (T − T∞)
1
4

where C and T∞ are positive constants.

Using the Newton-Raphson linearization:

(Ṡ ′′′)p = (Ṡ ′′′)
∗

p +
∂( ˙S ′′′)

∂T

∣∣∣∣∣
T ∗

P

(TP − T
∗
P )

derive expressions for the Sc and Sp coefficients in the equation

(Ṡ ′′′)p = Sc + SpTP

Note that (Ṡ ′′′)
∗

p is the source term function evaluated using T ∗
P , which is the

previous guessed value of TP .

5.18 For each of the non-linear source term functions given below, derive expressions for
the Sc and Sp coefficients in the linearization equation:

(S ′′′)p = Sc + SpTP



Use the Newton-Raphson linearization:

(Ṡ ′′′)p = (Ṡ ′′′)
∗

p +
∂( ˙S ′′′)

∂T

∣∣∣∣∣
T ∗

P

(TP − T
∗
P )

where (Ṡ ′′′)
∗

p is the source term function evaluated using T ∗
P , which is the previous

guessed value of TP .

(a) For positive constants C and T∞:

Ṡ ′′′ = − C (T − T∞)
1
4

(b) For positive constants K and Tsurr:

Ṡ ′′′ = −K
(
T 4 − Tsurr

4
)

5.19 The objective of this analysis is to derive a general formulation for a non-linear
convection heat transfer boundary condition for a boundary node in a Finite Vol-
ume Method discretization. Note that the convection heat transfer coefficient at
the boundary, h∞, depends on the temperature difference, (TR − T∞), raised to the
power m.

For the typical east boundary control volume shown in Problem Figure 5.21, derive
the coefficients aPR, aWR, and bPR for the boundary node equation given in Equa-
tion (P5-32).

aPRTR = aWRTP + bPR (P5-32)

You may assume that TR is always a node on the boundary. Note that the boundary
node equation must be linear in TP and TR. Therefore, in your derivation, use a
Newton-Raphson linearization of the expression for the convection heat transfer at
the boundary. Use the notation that T ∗

R is the previous iteration (or guessed) value
of TR. Show your work.

TP TR T∞

Ac

qcond qconv = h∞Ac (TR − T∞)

h∞ = C1(TR − T∞)m

k

∆x

Problem Figure 5.21: Convection boundary condition schematic for Problem 5.19.

5.20 Problem Figure 5.22 shows a radiation heat transfer boundary condition on the right
boundary of a typical domain.



For the typical east boundary control volume shown in the figure, derive expres-
sions for the coefficients aPR, aWR, and bPR for the boundary node equation given
in Equation (P5-33).

aPRTR = aWRTP + bPR (P5-33)

You may assume that TR is always a node on the boundary. Note that the bound-
ary node equation must be linear in TP and TR. Therefore, in your derivation, use a
Newton-Raphson linearization of the expression for the heat transfer at the bound-
ary. Use the notation that T ∗

R is the previous iteration (or guessed) value of TR.

surroundings
TP TR

Tsurr
Ac

qcond qrad = σ ǫAc (T
4
R − T

4
surr)k

∆x

∆x
2

Problem Figure 5.22: Radiation boundary condition schematic for Problem 5.20.

5.21 For the following non-linear differential equation for φ

c
∂φ

∂t
=

∂

∂x

(
φ
∂φ

∂x

)
(P5-34)

with positive constant c:

(a) Derive expressions for the coefficients aP , aW , aE , and bP of a discretization
equation in the form

aPφP = aWφW + aEφE + bP (P5-35)

for the general case using a time weighting factor ft. Use the nomenclature
from Problem Figure 5.23 and clearly show the assumptions and approxima-
tions you make in the derivation. You may assume constant cross-sectional
area and uniform grid spacing.

Problem Figure 5.23: Nomenclature for Problem 5.21.

(b) Write out the general discretization equation for the Explicit time weighting.

(c) What is the stability criterion for the Explicit equation from part (b)?



5.22 For the following differential equation for Φ with positive constants a, b, and c:

∂Φ

∂t
= a (b− Φ) + c

∂Φ

∂x
(P5-36)

(a) By integrating over time and space, derive expressions for the coefficients aP ,
aW , aE , and bP of a discretization equation in the form

aPΦ
n
P = aWΦn

W + aEΦ
n
E + bP (P5-37)

for the general case using a time weighting factor ft. Use the nomenclature
from Problem Figure 5.24 and clearly show the assumptions and approxima-
tions you make in the derivation. You may assume constant cross-sectional
area and uniform grid spacing.

Problem Figure 5.24: Nomenclature for Problem 5.22.

(b) Write out the general discretization equation for the Explicit (ft = 0 ) time
weighting.

5.23 For the following differential equation for Φ with positive constants a and b:

∂Φ

∂t
= a

∂Φ

∂x
− b x Φ (P5-38)

(a) By integrating over time and space, derive expressions for the coefficients aP ,
aW , aE , and bP of a discretization equation in the form

aPΦ
n
P = aWΦn

W + aEΦ
n
E + bP (P5-39)

for the general case using a time weighting factor ft. Use the nomenclature
from Problem Figure 5.25 and clearly show the assumptions and approxima-
tions you make in the derivation. You may assume constant cross-sectional
area and uniform grid spacing.

(b) Write out the general discretization equation for the Fully Implicit (ft = 1 )
scheme.

5.24 In a particular application, the time-varying concentration, C, of a substance in a
vertical channel is governed by Equation (P5-40).



Problem Figure 5.25: Nomenclature for Problem 5.23.

∂C

∂t
= Γ

∂2C

∂y2
− β (C − 1) (P5-40)

where Γ and β are positive constants.

CN

CP

CS

y

N

P

S

Ac

∆y

∆y

Problem Figure 5.26: Typical control volume at P for Problem 5.24.

(a) For the typical control volume centred at the P point shown in Problem Fig-
ure 5.26, derive the coefficients aP , aN , aS , and bP for the discretization equation
given in Equation (P5-41)

aPC
n
P = aNC

n
N + aSC

n
S + bP (P5-41)

where the superscript “n” refers to a new time step value of a quantity. Use
the finite volume method discussed in this course with a general time weight
factor, ft, constant cross-sectional area, Ac, uniform grid spacing and refer to
an old time step value of a quantity with a superscript “o”. Note that in this
question CP is the P point value of C and not the specific heat. State your
assumptions. Note: in the time integration of the second term on the right
hand side of Equation (P5-40), use only the new time step value.

(b) Write out the discretization equation for the Fully Explicit case (neighbour val-
ues taken at the old time step level). Is there a time step restriction? If so, derive



an expression for it in terms of the appropriate problem parameters.

(c) Using the Fully Implicit version of the discretization equation, derive the alge-
braic equation for CP that would be used to calculate the steady-state C field.


