## **Bühlmann Model**

In this model we have an independent identically distributed process  $\{X_1, ..., X_N, X_{N+1}, ....\}$  with common mean and variance:

Hypothetical Mean: 
$$\mu(\theta) = E(X_1|\theta) = E(X_2|\theta) = \cdots$$

Process Variance: 
$$\sigma^2(\theta) = \text{Var}(X_1|\theta) = \text{Var}(X_2|\theta) = \cdots$$

The portion  $\{X_1, ..., X_N\}$  is used to forecast the future outcomes  $\{X_{N+1}, X_{n+1}, ....\}$ . Now we define the following quantities:

- (1) Population mean:  $\mu = E[\mu(\theta)] = E[E[X_t|\theta]]$
- (2) Expected Value of Process Variance:  $EPV = E[\sigma^2(\theta)] = E[Var[X_t|\theta]]$
- (3) Variance of Hypothetical Means: VHM =  $Var[\mu(\theta)] = E[(\mu(\theta) \mu)^2]$

If no prior information is available, then the population mean is used as an estimate for the expected values of the  $X_t$ 's.

Example (from the Dean's note). The number of claims  $X_t$  during the t-th period for a risk has a Poisson distribution with parameter  $\theta$ :

$$P[X_t = x] = \frac{\theta^x e^{\theta}}{x!}$$

The risk was selected at random from a population for which  $\theta$  is uniformly distributed over the interval [0, 1]. It will be assumed that  $\theta$  is constant through time for each risk.

- (1) Hypothetical mean for risk with parameter  $\theta$  is  $\mu(\theta) = E[X_t | \theta] = \theta$  because the mean of the Poisson random variable is the parameter  $\theta$ .
- (2) Process variance for risk with parameter  $\theta$  is

$$\sigma^2(\theta) = \operatorname{Var}[X_t|\theta] = \theta$$

because the variance equals the parameter  $\theta$  for the Poisson.

(3) Variance of the Hypothetical Means (VHM) is

$$\operatorname{Var}\left(E[X_t|\theta]\right) = \operatorname{Var}(\theta) = E(\theta^2) - E(\theta)^2 = \int_0^1 \theta^2 d\theta - \left(\int_0^1 \theta d\theta\right)^2 = \frac{1}{12}$$

(4) Expected Value of the Process Variance (EPV) is

$$E\left[\operatorname{Var}(X_{\theta}|\theta)\right] = E[\theta] = \int_{0}^{1} \theta d\theta = \frac{1}{2}$$

(5) Unconditional Variance (or total variance) is

$$Var[X_{\theta}] = VHM + EPV = \frac{1}{12} + \frac{1}{2} = \frac{7}{12}$$

## Derivation of the Credibility factor in Bühlmann Model

By setting  $\bar{X} = \frac{X_1 + \dots + X_N}{N} = \frac{1}{N} \sum_{i=1}^N X_i$  we have

$$E(\bar{X}|\theta) = E\left[\frac{1}{N}\sum_{i=1}^{N}X_i|\theta\right] = \frac{1}{N}\sum_{i=1}^{N}E(X_i|\theta) = \frac{1}{N}\sum_{i=1}^{N}\mu(\theta) = \mu(\theta)$$

So , in other words ,  $\bar{X}$  is an unbiased estimator for  $\mu(\theta)$  . Now we seek a and b so as to minimize the expected value:

$$\min E \left[ a + b\bar{X} - \mu(\theta) \right]^2$$

where the expectation is taking with respect to the joint distribution of  $(X_1, ..., X_N, \theta)$ .

For simplicity, set

$$Y = \bar{X} - \mu(\theta)$$

Then  $\bar{X} = Y + \mu(\theta)$  and of course we have

$$E(Y|\theta) = E(\bar{X}|\theta) - E(\mu(\theta)|\theta) = E(\bar{X}|\theta) - \mu(\theta) = 0$$

Now note that

$$\begin{split} \left[a+b\bar{X}-\mu(\theta)\right]^2 &= \left[a+bY+(b-1)\mu(\theta)\right]^2 \\ &= \left(bY+c(\theta)\right)^2 \qquad c(\theta)=a+(b-1)\mu(\theta) \\ \\ &= b^2Y^2+2bc(\theta)Y+c(\theta)^2 \end{split}$$

Then

$$E\left[a+b\bar{X}-\mu(\theta)\right]^2=b^2E(Y^2)+2bE\left[c(\theta)Y\right]+E\left[c(\theta)^2\right] \tag{1}$$

But:

$$E\left[c(\theta)Y\right] = E\left[E\left[c(\theta)Y|\theta\right]\right] = E\left[c(\theta)E\left[Y|\theta\right]\right] = E\left[c(\theta)\operatorname{zero}\right] = E(\operatorname{zero}) = 0$$

So the equality (1) reduces to

$$E\left[a+b\bar{X}-\mu(\theta)\right]^2 = b^2 E(Y^2) + E\left[c(\theta)^2\right]$$
 (2)

To minimize this, we must set the partial derivative of it equal to zero:

$$\frac{\partial}{\partial a} = 2E\left[c(\theta)\frac{\partial c(\theta)}{\partial a}\right] = 2E\left(c(\theta)\right) = 2\left\{a + (b-1)E[\mu(\theta)]\right\} = 2\left\{a + (b-1)\mu\right\}$$

Then

if 
$$\frac{\partial}{\partial a} = 0$$
  $\Rightarrow$   $a = (1-b)\mu$ 

**Next Step.** Using the equality  $a = (1 - b)\mu$  we can now write the right-hand side of equation (2) as

$$b^{2}E(Y^{2}) + E\left[(1-b)^{2}(\mu(\theta) - \mu)^{2}\right] = b^{2}E(Y^{2}) + (1-b)^{2}E\left[(\mu(\theta) - \mu)^{2}\right]$$

$$= b^{2}E(Y^{2}) + (1-b)^{2}Var(\mu(\theta))$$

$$= b^{2}E(Y^{2}) + (1-b)^{2}VHM$$
 (3)

Further note that

$$\begin{split} \mathrm{E}(\mathrm{Y}^2) &= \mathrm{E}\Big\{\mathrm{E}[\mathrm{Y}^2|\theta]\Big\} &= \mathrm{E}\Big\{\mathrm{E}\Big[(\bar{\mathrm{X}} - \mu(\theta))^2|\theta\Big]\Big\} \\ &= \mathrm{E}\Big\{\mathrm{Var}\Big[\bar{\mathrm{X}}|\theta\Big]\Big\} = \mathrm{E}\Big\{\tfrac{1}{\mathrm{N}}\mathrm{Var}\Big[\mathrm{X}_1|\theta\Big]\Big\} \\ &= \tfrac{1}{\mathrm{N}}\mathrm{E}\Big\{\mathrm{Var}\Big[\mathrm{X}_1|\theta\Big]\Big\} = \tfrac{1}{\mathrm{N}}\mathrm{EPV} \end{split} \tag{4}$$

Putting this into (3), the right-hand side of (3) reads:

$$b^2 \frac{EPV}{N} + (1-b)^2 VHM$$

Now differentiate this with respect to b and set it equal to zero:

$$\frac{\partial}{\partial b} = 0 \quad \Rightarrow \quad 2b \frac{EPV}{N} - 2(1 - b)VHM$$

$$\Rightarrow \quad b = \frac{VHM}{VHM + \frac{EPV}{N}} = \frac{N}{N + \frac{EPV}{VHM}} = \frac{N}{N + K} \quad \text{where} \quad K = \frac{EPV}{VHM}$$

This quantity is denoted by Z:

$$Z = \frac{VHM}{VHM + \frac{EPV}{N}}$$

Then

$$a = (1 - b)\mu = (1 - Z)\mu$$

Then our estimate for  $\mu(\theta)$  will be

$$\hat{\mu}(\theta) = a + b\bar{X} = (1 - Z)\mu + Z\bar{X}$$

**Note**. As we saw in the calculations in (4) we have:

$$E\left\{\operatorname{Var}\left[\bar{X}|\theta\right]\right\} = \frac{1}{N}EPV$$

Also:

$$\operatorname{Var}\left\{E\left[\bar{X}|\theta\right]\right\} = \operatorname{Var}\left\{E\left[\frac{1}{N}\sum_{i=1}^{N}X_{i}|\theta\right]\right\} = \operatorname{Var}\left\{\frac{1}{N}\sum_{i=1}^{N}E\left[X_{i}|\theta\right]\right\} = \operatorname{Var}\left\{\frac{1}{N}\sum_{i=1}^{N}\mu(\theta)\right\} = \operatorname{Var}(\mu(\theta)) = VHM$$

Now by adding up these expressions, we get:

$$E\Big\{\mathrm{Var}\Big[\bar{X}|\theta\Big]\Big\} + \mathrm{Var}\Big\{E\Big[\bar{X}|\theta\Big]\Big\} = \frac{EPV}{N} + VHM \quad \Rightarrow \quad \mathrm{Var}(\bar{X}) = \frac{EPV}{N} + VHM$$
 
$$Z = \frac{VHM}{VHM + \frac{EPV}{N}} = \frac{\mathrm{Var}(\mu(\theta))}{\mathrm{Var}(\bar{X})} = \frac{\mathrm{Variance\ of\ the\ Hypothetical\ Means\ }}{\mathrm{Total\ Variance\ of\ the\ Estimator\ }\bar{X}}$$

Also note that

$$K = \frac{E(\text{Var}[X|\theta])}{\text{Var}(E[X|\theta])}$$

Example (from the Dean's notes). Two risks have the following severity distributions and that Risk 1 is twice as likely to be observed as Risk 2.

|                 | Probability of Claim | Probability of Claim |
|-----------------|----------------------|----------------------|
| Amount of Claim | Amount of Risk 1     | Amount of Risk 2     |
| 250             | 0.5                  | 0.7                  |
| 2500            | 0.3                  | 0.2                  |
| 60000           | 0.2                  | 0.1                  |

A claim of 250 is observed. Determine the Bühlmann credibility estimate of the second claim amount from the same risk.

## **Solution**

Let us denote the claim amount by X.

**Step 1**. Calculate the variance of the hypothetical means :

$$E[X|\text{Risk 1}] = (0.5)(250) + (0.3)(2500) + (0.2)(60000) = 12875$$

$$E[X|\text{Risk 2}] = (0.7)(250) + (0.2)(2500) + (0.1)(60000) = 6675$$

$$E[X] = (\frac{2}{3})(12875) + (\frac{1}{3})(6675) = 10808.33$$

$$VHM = (\frac{2}{3})(12875 - 10808.33)^2 + (\frac{1}{3})(6675 - 10808.33)^2 = 8542,222.2$$

Step 2. Calculate the expected value of the process variance:

$$\begin{aligned} \operatorname{Var}[X|\operatorname{Risk}\ 1] &= (0.5)(250 - 12875)^2 + (0.3)(2500 - 12875)^2 + (0.2)(60000 - 12875)^2 = 55,6140,625.0 \\ \operatorname{Var}[X|\operatorname{Risk}\ 2] &= (0.7)(250 - 6,675)^2 + (0.2)(2500 - 6675)^2 + (0.1)(60000 - 6675)^2 = 316,738,125.0 \\ EPV &= (\frac{2}{3})(556,140,625.0) + (\frac{1}{3})(316,738,125.0) = 476,339,791.7 \\ K &= \frac{EPV}{VHM} = \frac{476,339,791.7}{8,542,222.2} = 55.76 \\ Z &= \frac{N}{N+K} = \frac{1}{1+55.76} = \frac{1}{56.76} \\ \operatorname{B\"{u}hlmann\ credibility\ estimate} = (\frac{1}{56.76})(250) + (\frac{55.76}{56.76})(10,808.33) = 10,622 \end{aligned}$$

## **Example** \*. You are given the following:

- (i) The number of claims made by an individual insured follows a Poisson distribution.
- (ii) The expected number of claims,  $\lambda$ , for insureds in the population has the probability density function

$$f(\lambda) = 4\lambda^{-5}$$
 for  $1 \le \lambda < \infty$ 

Determine the value of the Bühlmann k used for estimating the expected number of claims for an individual insured.

**Solution**. Here X denotes the number of claims.

$$E[X|\lambda] = E(\operatorname{Poisson}(\lambda)) = \lambda$$

$$E(\lambda^2) = 4 \int_1^{\infty} \lambda^2 \lambda^{-5} d\lambda = 4 \int_1^{\infty} \lambda^{-3} d\lambda = \frac{4}{-2} \lambda^{-2} \Big]_1^{\infty} = 2$$

$$E(\lambda) = 4 \int_1^{\infty} \lambda \lambda^{-5} d\lambda = 4 \int_1^{\infty} \lambda^{-4} d\lambda = \frac{4}{-3} \lambda^{-3} \Big]_1^{\infty} = \frac{4}{3}$$

$$\operatorname{Var}(E[X|\lambda]) = \operatorname{Var}(\lambda) = E(\lambda^2) - E(\lambda)^2 = 2 - \frac{16}{9} = \frac{2}{9}$$

$$\operatorname{Var}[X|\lambda] = \operatorname{Var}(\operatorname{Poisson}(\lambda)) = \lambda$$

$$E(\operatorname{Var}[X|\lambda]) = E(\lambda) = \frac{4}{3}$$

$$K = \frac{E(\operatorname{Var}[X|\lambda])}{\operatorname{Var}(E[X|\lambda])} = \frac{\frac{4}{3}}{\frac{2}{9}} = 6$$