Reverse Operation of Differentiation
section 5.1

Definition. Suppose that function f(x) is defined on an interval I. A

function F(x) is said to be an antiderivative of f if

F'(z) = f(x) for all x in I

Note. The antiderivative is not unique. For example both functions

%x?’ and %m?) + 1 are antiderivatives of the function z

2 over the interval

(—00, 00). In fact, all functions %xS—FC , where C'is an arbitrary constant,
is an antiderivative of 22. The next theorem shows that any antiderivative

is found by adding a constant to an antiderivative.

Theorem. Any two antiderivative of f over interval I differ by a constant,
i.e. , if F'(z) is an antiderivative , then every antiderivative is of the form

F(x) 4+ C where C is a constant (not dependent on x).

Proof. Let G(x) be any antiderivative of f(z) over the interval I, We want
to show that there is some C such that G(z) = F(z)+ C for all z € I. To

show this , take the function



By taking the derivative of both sides of this equality , we will have
H'(z) =G (z)— F'(z) = f(z) — f(z) =0 for all x € T (1)

So the derivative of H is zero over the interval I.
Fix a point a € I , and take the arbitrary point x € I different from a.
According to the Mean-Value Theorem there exists some ¢ between a

and z such that

= H'(c) (2)

T—a
But from (1) we have H'(¢) = 0 , therefore the equality (2) reduces to
A@)-H@) _ (  equivalently H(z) — H(a) = 0 , and then H(z) = H(a).

r—a

But then we have

So , we have provided a constant C' , namely C' = G(a) — F(a) , not
dependent on x , such that for all z € I we have G(z) = F(z) + C . This

is exactly what we were asked to prove. v

Definition. The collection of all antiderivatives of a given function f is

denoted by / f(x)dx and is called the indefinite integral of f(x).



Example. Since the derivative of tanz is sec?z, equivalently , an an-
tiderivative of the function sec? z is tan z, and then all the antiderivatives

can be found by adding a constant:
/sec%:d:ﬂ =tanx + C

we can write:

d(tanz)
dx

—sec’y & /sec2xdx:tan$—|—0

As another example , for any real number r # —1 we have

d 1 1
— ) =2 = /xr dr = —— "+ ¢
de \r +1 r+1

Example.

VR S 15
Vo dr = — = +C
/ V3+1

Algebraic Properties of Indefinite Integral.

[ 1@+ s@] iz = [ s@)do+ [ oo

/kf(:z:)dx:k/f(x)d:c

Example (section 5.1 exercise 8).

) 1 2
Find / (P — ﬁ) dx




Solution.

—1)2
Example (section 5.1 exercise 20). Evaluate / (z \/_) dx
T
Solution.
2 — 2z +1 y
= [ ——dx
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Example (section 5.1 exercise 25).

Find the equation of the curve that has a second derivative equal to 622

and passes through the points (0,2) and (—1, 3)
Solution.
y// — 6%2

Integrate:

y’=6(%x3)—i—C’:2x3+C’

Integrate again:

y=2(32")+Cr+D =12+ Cz+ D

Insert the point (0,2) to have:
2=D

Substitute D =2 in y = 32* + Cz + D to have:
y=1zt+Cr+2

Insert the point (—1,3) to have:
3=1-C+2 = (C=-

D=

Substitute C' = — % iny= %:c‘l + Cz + 2 to have:

y:%x4—%x+2 v



Example (section 5.1 exercise 27).

Is it possible to find a function that has a relative minimum f(2) = 3

and has a second derivative equal to —bx 7

Solution.
f'(x) ==z = f'(2)=-10<0
= (second derivative test) the point z = 2 gives a local maximum

= no such function exists.

A table of indefinite integral you are supposed to know for your your final



exannl:
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sinx dx

cosx dx

sec® xdx

secx tanx dx

csc xdx

cscx cotx dx
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LmT—Fl +C

In|z|+C

sinz + C

tanx + C

secx + C

—cotx +C

—cscx +C
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