
Differentiation
(sections 3.1 to 3.4)

We recall from high school that one needs the slope m and one point (x0, y0) of a non-vertical

line (m ̸= ±∞) in order to write the equation of it. The equation of the line is

y − y0 = m(x− x0) (∗)

If (x1, y1) and (x2, y2) are two points of the line , then m = y2−y1
x2−x1

and either of these two points

can serve as the point (x0, y0) . If for instance we take (x1, y1) as the substitute for (x0, y0) ,

then the equation takes on a new form

y − y1 =
y2 − y1
x2 − x1

(x− x1)

equivalently
y − y1
x− x1

=
y2 − y1
x2 − x1

which is easier to memorize.

Example: Find the equation of the line which passes through two points (1,−1) and (0, 2).

Solution:

y − (−1)

x− (1)
=

(2)− (−1)

(0)− (1)
⇒ y + 1

x− 1
=

3

−1
⇒ y+1 = −3(x−1) ⇒ y = −3x+2

Consider a function y = f(x) and the tangent line T at some point (a , f(a)) on the graph.

Imagine another point (x , f(x)) on the graph and call L the line joining (a , f(a)) and (x , f(x))

. The slope of the line L is f(x)−f(a)
x−a . As x approaches a the line L will approach the line T

and therefore the slope of L approaches that of T . So in the limit we have:

slope of T = lim
x→a

f(x)− f(a)

x− a

In other words:

slope of the tangent line at a = lim
x→a

f(x)− f(a)

x− a
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(a , f(a))

(x , f(x))

xa

In addition to this application of giving the slope of the tangent line , the limit limx→a
f(x)−f(a)

x−a

has some other important applications. Therefore we give it a name:

Definition: If for a function f and a point a in its domain the limit limx→a
f(x)−f(a)

x−a exists,

then we call this limit the derivative of the function f at point a and we may denote it by

f ′(a) briefly.

f ′(a)
definition

= lim
x→a

f(x)− f(a)

x− a

When this limit exists, we may also say that the function f is differentiable at a.

Note: If x → a, then x − a → a − a = 0. The increment x − a may be denoted by h

or ∆x. In the textbook it is denoted by h. By letting x − a = h we have x = a + h and

therefore the expression f(x)−f(a)
x−a can be equivalently written as f(a+h)−f(a)

h , and the equality

f ′(a) = limx→a
f(x)−f(a)

x−a can be equivalently written as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
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If ∆x is used instead of h, then we have

f ′(a) = lim
∆x→0

f(a+∆x)− f(a)

∆x

Note: The difference f(x) − f(a) is indeed the increment in the values of the function and it

might be written as ∆f or ∆y. So , with this notation, we have

f ′(a) = lim
h→0

∆f

∆x
at base point a

Note that

∆f = f(x)− f(a) =⇒ f(x) = f(a) + ∆f

new value of f = old value of f plus increment in f

Example: Given two functions f and g and a base point a we have

∆(fg) = (fg)(x)− (fg)(a)

= f(x)g(x)− f(a)g(a)

= {f(a) + ∆f}{g(a) + ∆g} − f(a)g(a)

= f(a)∆g + g(a)∆f + (∆f)(∆g)

Exercise: Find expressions for ∆(f ± g) and ∆(cf) and ∆
(
f
g

)
in terms of ∆f and ∆g.

Convention: The derivative of a function y = y(x) at all possible points x where the derivative

exists is denoted by dy
dx . If the derivative at a particular point x = a is being considered, then

we denote it by dy
dx

∣∣∣
x=a

Example: Calculate ∆y for the function y = 1
2x−1 at an arbitrary point x. What is the value

of ∆y at the base point x = 1 ?. Finally, find the derivative dy
dx at the arbitrary point x in the

domain of y(x). what is the value of the derivative at the point x = 1 . See also Example 3.10

on page 164 of the textbook.
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Solution: Step 1:

∆y = y(x+∆x)− y(x) =
1

2(x+∆x)− 1
− 1

2x− 1
=

{2x− 1} − {2(x+∆x)− 1}
{2(x+∆x)− 1}{2x− 1}

=
−2∆x

{2(x+∆x)− 1}{2x− 1}

Step 2.

y′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0

−2∆x
{2(x+∆x)−1}{2x−1}

∆x
= lim

∆x→0

−2

{2(x+∆x)− 1}{2x− 1}
=

−2

(2x− 1)2

So,
d

dx

(
1

2x− 1

)
=

−2

(2x− 1)2

or we may write it as (
1

2x− 1

)′
=

−2

(2x− 1)2

At the particular point x = 1 we have

d

dx

(
1

2x− 1

)∣∣∣∣
x=1

=
−2

(2x− 1)2

∣∣∣∣
x=1

=
−2

(2− 1)2
= −2

Example: Find the derivative of the function y = 3
√
x at the origin.

Solution:

y′(0) = lim
h→0

y(0 + h)− y(0)

h
= lim

h→0

y(h)− y(0)

h
= lim

h→0

3
√
h− 0

h

= lim
h→0

1
3
√
h2

=
1

0+
= ∞ =⇒ the derivative y′(0) does not exist

Geometrically , the tangent line is vertical at the origin; see the graph.
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Theorem: Differentiability implies continuity , that is, if f is differentiable at a then f is

continuous at a.

This is Theorem 3.6 of the textbook.

Proof: By assuming that f ′(a) exists we want to show that f is continuous at a , equivalently we

want to show that limx→a f(x) = f(a). Equivalently we must show that limx→a

{
f(x)−f(a)

}
=

0 . Here is how:

lim
x→a

{
f(x)−f(a)

}
= lim

x→a

{
f(x)− f(a)

x− a

}
(x−a) = lim

x→a

f(x)− f(a)

x− a
lim
x→a

(x−a) = f ′(a) times 0 = 0

Corollary: If f is discontinuous at a , then f is not differentiable at a.

Note: The converse to the above theorem is not true. For this, take the function y(x) = |x|.

Note that the graph of this function has a “cusp” at the origin. This causes the derivative not
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to exist there. In fact at the point a = 0 we have:

lim
h→0

y(0 + h)− y(0)

h
= lim

h→0

y(h)− y(0)

h
= lim

h→0

|h| − 0

h
=


limh→0+

|h|
h = limh→0+

h
h = 1

limh→0−
|h|
h = limh→0+

−h
h = −1

=⇒ the limit does not exist =⇒ the function is not differentiable at the origin

Note: Geometrically, if there is cusp on the graph of a function, then the function is not

differentiable at that point.

The left-hand derivative and right-hand derivative are define by:

f ′
−(a) = lim

h→0−

f(a+ h)− f(a)

h

f ′
+(a) = lim

h→0−

f(a+ h)− f(a)

h

Theorem: For f ′(a) to exist it is necessary and sufficient that these conditions are met:

a) both f ′
−(a) and f ′

+(a) exist

b) f ′
−(a) = f ′

+(a)

Furthermore , if these conditions are met, then the derivative f ′(a) equals the common value

of f ′
−(a) and f ′

+(a) :

f ′(a) = f ′
−(a) = f ′

+(a)

Example: For the function f(x) = |x − 3| + x2 calculate both f ′
−(3) and f ′

+(3) and check

whether this function is differentiable at x = 3.

Solution:
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• f ′
−(3) = lim

h→0−

f(3 + h)− f(3)

h
= lim

h→0−

{
|h|+ (3 + h)2

}
− {9}

h

= lim
h→0−

{
|h|+ (9 + 6h+ h2)

}
− {9}

h
= lim

h→0−

|h|+ 6h+ h2

h

= lim
h→0−

(−h) + 6h+ h2

h
= lim

h→0−
5h+h2

h of indeterminate form 0
0

= lim
h→0−

(5 + h) = 5

• f ′
+(3) = lim

h→0+

f(3 + h)− f(3)

h
= lim

h→0+

{
|h|+ (3 + h)2

}
− {9}

h

= lim
h→0+

{
|h|+ (9 + 6h+ h2)

}
− {9}

h
= lim

h→0+

|h|+ 6h+ h2

h

= lim
h→0+

(h) + 6h+ h2

h
= lim

h→0+

7h+ h2

h
of indeterminate form

0

0

= lim
h→0+

(7 + h) = 7

f ′
−(3) ̸= f ′

+(3) =⇒ it is not differentiable at x = 3
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Example: Find the derivative of the function

f(x) =


1− x2 x < 1

0 x = 1

x− 1 x > 1

at the point x = 1 if exists at all.

Solution: Since the function is defined by different rules on both sides of the point x = 1 , we

have to calculate f ′
−(1) and f ′

+(1) in order to find out whether f ′(1) exists .

• f ′
−(1) = lim

h→0−

f(1 + h)− f(1)

h
= lim

h→0−

{1− (1 + h)2} − {0}
h

= lim
h→0−

1− (1 + 2h+ h2)

h
= lim

h→0−

−2h− h2

h
of indeterminate form

0

0

= lim
h→0−

(−2− h) = −2

• f ′
+(1) = lim

h→0−

f(1 + h)− f(1)

h
= lim

h→0+

{(1 + h)− 1} − {0}
h

= lim
h→0+

h

h
of indeterminate form

0

0

= lim
h→0+

(1) = 1
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f ′
−(1) ̸= f ′

+(1) =⇒ it is not differentiable at x = 1

Theorem (algebraic properties of differentiation): Suppose that functions f and g are

differentiable at a. Then The function f ± g , fg , cf (c being a constant) are differentiable at

a. The function f
g is differentiable at a provided that g(a) ̸= 0. Furthermore we have:

• (f ± g)′ = f ′ ± g′ at point a

• (cf)′ = c f ′ at point a

• (fg)′ = f ′g + fg′ at point a

•
(
f
g

)′
= f ′g−fg′

g2
at point a

This theorem is comprised of theorems 3.4 , 3.5, 3.7, and 3.8 of the textbook.

Proof: Here is the proof for the equality (fg)′ = f ′g + fg′ (the other parts of the theorem can

be proven with less or more effort)

Step 1. Since g is assumed to be differentiable at a it is continuous at a , therefore lim∆x→0 g(x) =

g(a) , equivalently lim∆x→0{g(x)− g(a)} = 0 , i.e. lim∆x→0∆g = 0.

Step 2. As we have seen above , at a base point a we have

∆(fg) = f(a)∆g + g(a)∆f + (∆f)(∆g)
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Now divide both sides by ∆x and let ∆x → 0 to get:

(fg)′(a) = lim
∆x→0

∆(fg)
∆x

= lim
∆x→0

{
f(a)∆g

∆x + g(a)∆f
∆x +

(
∆f
∆x

)
(∆g)

}

= f(a) lim
∆x→0

∆g
∆x + g(a) lim

∆x→0

∆f
∆x + lim

∆x→0

(
∆f
∆x

)
lim

∆x→0
(∆g)

= f(a) g′(a) + g(a)f ′(a) + f ′(a) times 0

= f(a) g′(a) + g(a)f ′(a)

Theorem: The derivative of a constant function is zero, that is, if f(x) = c for all x then

f ′(x) = 0 at all x

Proof:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= lim

h→0

0

h
= 0

Theorem: For f(x) = x we have f ′(x) = 1 at all x’s

Proof:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)− x

h
= lim

h→0

h

h
= 1

Theorem: If n is an arbitrary positive integer (n=1,2,...) , then d(xn)
dx = nxn−1 at all x’s ; we

call this rule the power rule for positive integers.

Proof: We have seen this for n = 1 in the previous theorem. Now we proceed to prove it by

Mathematical induction. So suppose that we have it for an n :

assumption : {xn}′ = nxn−1
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Now we must prove it for n+ 1 instead of n :

assumption : {xn+1}′ = (n+ 1)xn

Here is how:

{xn+1}′ = {xnx}′

= {xn}′{x}+ {xn}{x}′

= {nxn−1}{x}+ {xn}{1} using the mathematical induction assumption

= nxn + xn = (n+ 1)xn ✓

Example: Find the derivative function for the function y = 2x3 − x2 + 1 .

Solution:

y′ = (2)(3)x2 − (2)x1 + 0 = 6x2 − 2x ✓ this is a function of x

Example): Differentiate the function y = (x3+2x+1)(x4−2x2+x−3) ; simplify your answer.

Solution: Although one can do the expansion first and then find the derivative , but it is easier

to apply the product rule :

y′ = {x3 + 2x+ 1}′{x4 − 2x2 + x− 3}+ {x3 + 2x+ 1}{x4 − 2x2 + x− 3}′

= {3x2 + 2}{x4 − 2x2 + x− 3}+ {x3 + 2x+ 1}{4x3 − 4x+ 1}

= {3x6 − 6x4 + 3x3 − 9x2 + 2x4 − 4x2 + 2x− 6}+ {4x6 − 4x4 + x3 − 8x4 − 8x2 + 2x+ 4x3 − 4x+ 1}

= {3x6 − 4x4 + 3x3 − 13x2 + 2x− 6}+ {4x6 − 12x4 + 5x3 − 8x2 − 2x+ 1}

= 7x6 − 16x4 + 8x3 − 21x2 − 5

Example (section 3.4 exercise 12): Find f ′(x) in simplified form if

f(x) =
x2 + 2x+ 3

x2 − 5x+ 1
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Solution: Apply the quotient rule to get:

f ′(x) =
{x2 + 2x+ 3}′{x2 − 5x+ 1} − {x2 − 5x+ 1}′{x2 + 2x+ 3}

(x2 − 5x+ 1)2

=
{2x+ 2}{x2 − 5x+ 1} − {2x− 5}{x2 + 2x+ 3}

(x2 − 5x+ 1)2

=
{2x3 − 10x2 + 2x+ 2x2 − 10x+ 2} − {2x3 + 4x2 + 6x− 5x2 − 10x− 15}

(x2 − 5x+ 1)2

=
{2x3 − 8x2 − 8x+ 2} − {2x3 − x2 − 4x− 15}

(x2 − 5x+ 1)2
=

−7x2 − 4x+ 17

(x2 − 5x+ 1)2
✓

Theorem (power rule for the exponents of the form 1
n): If n is an arbitrary positive in-

teger (n=1,2,...) , then the derivative of function y = n
√
x = x

1
n is y′ = 1

nx
1
n
−1 i.e. the power

rule holds for these functions too.

y = x
1
n =⇒ y′ =

1

n
x

1
n
−1

Example: {
x

1
10

}′
=

1

10
x

1
10

−1 =
1

10
x−

9
10 =

1

10 x
9
10

=
1

10
10
√
x9

Proof of the theorem: Set a = (x+ h)
1
n and b = x

1
n . Then by raising to the power of n we

will have:  an = x+ h

bn = x
⇒ an − bn = h

Note that from the continuity of the root function we actually have

a → b when h → 0

To show y′ = 1
nx

1
n
−1 we must show that

lim
h→0

y(x+ h)− y(h)

h
=

1

n
x

1
n
−1
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This is how it is done:

y′(x) = lim
h→0

y(x+ h)− y(x)

h
= lim

h→0

(x+ h)
1
n − (x)

1
n

h
= lim

h→0

a− b

an − bn

= lim
a→b

a− b

an − bn
= lim

a→b

a− b

(a− b)( an−1 + an−2b+ · · ·+ abn−2 + bn−1︸ ︷︷ ︸
n terms

)
=

= lim
a→b

1

an−1 + an−2b+ · · ·+ abn−2 + bn−1
= lim

a→b

1

bn−1 + bn−2b+ · · ·+ bbn−2 + bn−1

=
1

bn−1 + bn−1 + · · ·+ bn−1 + bn−1︸ ︷︷ ︸
n terms

=
1

n bn−1
=

1

n( n
√
x)n−1

=
1

nx
n−1
n

=
1

n
x

1−n
n =

1

n
x

1
n
−1 ✓

Note: When dealing with root functions differentiation, always write them in the rational-

exponent form , as the following example shows:

Example (section 3.4 exercise 15): Find f ′(x) in simplified form if f(x) = x
1
3

1−
√
x

Solution:

f(x) =
x

1
3

1− x
1
2

f ′(x) =

{
x

1
3

}′ {
1− x

1
2

}
−

{
x

1
3

}{
1− x

1
2

}′

(
1− x

1
2

)2

=

{
1
3x

− 2
3

}{
1− x

1
2

}
−

{
x

1
3

}{
−1

2x
− 1

2

}
(
1− x

1
2

)2 =
1
3x

− 2
3 − 1

3x
− 2

3
+ 1

2 + 1
2x

1
3
− 1

2(
1− x

1
2

)2

=
1
3x

− 2
3 − 1

3x
− 1

6 + 1
2x

− 1
6(

1− x
1
2

)2 =
1
3x

− 2
3 + 1

6x
− 1

6(
1− x

1
2

)2 ✓
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