Let us examine the behavior of the function

2 -1

f(x) = v #1

r—1

for the points close to z = 1. As you see in the following table as we approach the point z = 1
the values of the function approach the value L = 2. We describe this issue using the notation

2
: ze—1
imﬁ — =2




value of the function

value of the function

RN (xA2-1)/(x-1)
0.988 1.988
0.989 1.989

0.99 1.99
0.991 1.991
0.992 1.992
0.993 1.993
0.994 1.994
0.995 1.995
0.996 1.996
0.997 1.997
0.998 1.998
0.999 1.999

POIEX (xn2-1)/(x-1)
1.012 2.012
1.011 2.011

1.01 2.01
1.009 2.009
1.008 2.008
1.007 2.007
1.006 2.006
1.005 2.005
1.004 2.004
1.003 2.003
1.002 2.002
1.001 2.001




Example: Evaluate lim (322 — z + 1)

rz—1
Solution: As z gets close and closer to the value 1 , the function values get arbitrarily close

to 3. Therefore we can say that lim1 322 -2z +1=3.
T—r

Discussion: When we approach the point a = 0 the values of the function f(z) = ;12 become
very large , and in fact the values of the function become arbitrarily large when we approach

the point @ = 0 ; see the graph. We describe this situation by writing

Note that the oo here is just a symbol and is not a number. So in this case we say that the

limit does not exist, however we know that the values of the function get arbitrarily large when

we approach a = 0. The values of function f(x) get arbitrarily large negative values

_ -1
e
when we approach the point a = —1 ; we describe this situation by writing

. -1
lim =
rz——1 |3;' —+ 1|

By looking at the graphs of these two functions, one can see that the line x = 0 is the vertical

asymptote for both graphs.

Example (section 2.2 exercise 26 ): Find the limit lim —-2=2

I e where a is any number.

Solution:

i 1% —al
= 1im ——— = g
z—a (x —a)? zoa|r — a‘Z z—a |z — al

Theorem (algebraic properties of the limit):

Suppose that the limits lim f(z) = A and ligl g(x) = B exist. Then
T—ra Tr—a
(i) lgn{f(a:) +g(x)} = A+ B, that is

lim {f(2) + g(2)} = lim f(2) + lim ()



(ii) lim{f(z) - g(2)} = A— B, that is

lim { f(«) - g(x)} = lim f(2) — lim g(a)

r—a T—ra r—a

(iii) lim f(x)g(x) = AB , that is

T—a

lim f(z) g(x) = lim f(z) lim ()

(iv) lim c¢f(x) = cA , ¢ being an arbitrary constant , i.e.
T—a

lim ¢ f(z) = ¢ lim f(x)

r—ra T—ra

(v) lim G % provided that B # 0, that is

i—a 9(@)
) Jm(@) |
ilg}z g(z)  lim g(x) it 570

Tr—a

V2zr+1—+/3x+1
T

Example (technique of rationalization): Evaluate lir%
T—

Solution: We cannot use the above theorem for this example because the divisor’s limit is

zero. Since the dividend has a limit of zero too , we use the "rationalization” technique:

— lim V2x+1—/32+1 2x+14++/32+1
7—0 x V2x+1++/3z+1
(22+1)—(3z+1)

= hH(l){ VTS ENG +1)} using the rule (a — b)(a + b) = a® — b?
70 Lz(vV22 x

— T (=) — 1 (=1 _ =1
o }}L% {x(\/2x+1—|—\/3m+1)} o 316%{(\/29;+1+\/3x+1)} T2

Example (section 2.1 exercise 49): Assuming a # 0, use the rationalization technique to

evaluate the limit

Va2 + a2 — V222 + a2
im
w20 /322 44— V222 + 4




Solution:

= lim
x—0

Va2 + a2 — V222 + a2 Va2 + a2 + V222 + a2 V32 +4+ V222 +4
V322 44— V222 +4 Va2 + a2 + /222 4 a? V322 44+ V222 + 4

= lim
x—0

<($2+a2)—(2x2+a2)) ( 1 > V322 + 4+ 222 + 4
(322 +4) — (222 +4) Va2 + a? + /222 + a2 1

) —x? 1 V3x2 + 4+ V222 +4
= lim
=0\ 22 ) \Va? + a® + V22? + a? 1

, 1 V322 + 44 V22244
= lim(—1) > > > >
z—0 Va2 + a2+ 222 +a 1

__Fn<2éﬂ><%f>_1j

Example: The functions /1 —z — 3 and 2 + /x become zero at the point x = —8. Factor

. Y gl
them out in the form (z + 8)g(x) and then find the limit xlgr_lg S

Solution: Step 1.

m_3:(m_3)(m+3)_(1—x)—9_ —r—8 —(z+78)

VI—z+3 T VI-2+3 Vi-z+3 Vi-z+3
here (ac)—_i1
I = T—z+3



Step 2. Using the identity a® + b® = (a + b)(a? — ab + b?) we have:
(2+ V) { (2)*=(2) () +( %)2}

{(2)2—(2)(%)+(%)2}
e { -2

{&4@<@@+«@@2}

8—4%GHQ(V’)+4VF'2(%§
2

) {44%( }

S+x

{4—(2)( V) +( %)2}

2+V/z =

Step 3.
RV e o8 RO SRR S
lim ———— = lim = — lim =——=-2
z——8 2+ \3/5 r——8 8+w r——8 vVi—xz+3 6
4—(2)(3’/5)+(§/5)2}
Example: Find the limit lim ‘TS__“T_G
T—27 |z—2]
Solution:
3 —x—6 (v —2)(2? + 2z + 3)
R e I S S (20t

Sometimes we are only allowed to approach a point from one side: for instance for the function
V& we can approach the point a = 0 from the right only because the function is undefined

on the left-hand side of that point. The right-hand limit at a point a is denoted by lim and

z—at

the left-hand limit is denoted by lim . We have a similar list of algebraic properties of the

r—a~

right-hand limit and the left-hand limit.



Example (exercise 18 section 2.2): Evaluate lim 7%

z—0

Solution:
1,m{\/1+:1:—1 \/1—|—$—|—1} lim (I1+x)—1 lim x lim 1
= 11 = 11 = 11 = ]1
7—0 x? Vi+zr+1 =0 x2(v1+ax+1) 2=022(/14+2+1) 2=0x(V/1+z+1)

But we have

1 1
lim —— = - and

lim
a—0- z(v14+2+1) a—0+ 2(v/1+x +1)

so the limit does not exist.

Theorem (algebraic properties of the right-hand limit):
Suppose that the limits lim f(z) = A and lim g(x) = B exist. Then

z—at z—a

(i) lim {f(x)+ga)} = A+ B , that is

—at

lim {f(z) + g(x)} = lim f(z)+ lim g(z)

z—at z—at z—at

(ii) lim {f(x) —g(z)} = A— B, that is

x—>a+

lim {f(z) = g(x)} = lim f(z) - lim g(z)

z—at z—at z—at

(iii) lim f(x)g(z) = AB , that is

z—at

lim f(z)g(z) = lim f(z) lim g(z)

z—at z—at z—at

(iv) lim cf(x) = cA , ¢ being an arbitrary constant , i.e.

z—at

lim ¢ f(z) =c lim f(z)

z—at z—at
(v) lim % = % , that is
z—at
lim f(x
LG B
im ==
emsat 9(T) lim g(z)
z—at



Note: A similar list holds for the left-hand limit.

Theorem: A limit li_r>n f(z) exists if and only if both lim f(z) and lim+ (x) exist and are
r—a T—a~ T—a

equal. In this case, the three limits are equal.

Discussion: Some functions have this interesting property at a point a that lii)n f(x) = f(a).
X a

Such functions are said to be continuous at x = a. Geometrically, there is no hole in the

graph of the function at the point x = a. Examples of continuous function are: polynomials ,

trigonometric function , exponential function, the log functions, and the power functions.

Example: Let k be any real number. Find the value of k£ such that the function

2+ kx z>1

f(z) =
2k + 322 x <1

is continuous at x = 1.

Solution: We have f(1) = 2 + k .For the continuity to hold we must have both

lim f(a) = f(1)

z—1t

lim f(z) = f(1)

r—1—

The requirement lim f(x) = f(1) is equivalent to lim 2+ kz = 2+ k which is the same as the
z—1t z—1t

equality 2+ k = 2+ k which gives nothing. But the requirement lim f(x) = f(1) is equivalent
rz—1~
to lim 2k + 322 = 2 + k which is the same as 2k + 3 = 2 + k resulting in .

z—1—

Note: For k = —1 this function becomes
2—=x r>1
f(z) =
—2 + 322 <1

whose graph is



For k£ = 1 the function becomes

24z r>1

flz)=
2+ 322 <1

whose graph is



Example: Find the values of a and b such that the function

a(x? +1) — 2bx x <3
flz) = 4 r=3
2a + 3bx >3

is continuous everywhere.

Solution: The function is continuous on the interval (—oo, 3) because on this interval it is the
same as the polynomial a(x? + 1) — 2bx and we know that the polynomials are continuous. The
function is continuous on the interval (3, co) because it a polynomial there, namely 2a + 3bz.
The only point at which continuity is not guaranteed is the point z = 3 at which the rule of
the function changes and the function behaves differently on both sides of this point. Now

lim f(z)= lim {a(az2 +1)— be} = 10a — 6b

r—37 r—37

lim f(z) = lim {2&—1—31)95} =20+ 9b

z—37T z—3t1

10



For this function to be continuous at z = 3 we must have

li = f(3

x—1>r3n— f@) =13 - 10a — 60 = 4 simpl__igying d5a —3b=2
lim+f(:n):f(3) 20+ 9b =4 20+ 9b =4
z—3

To solve this system, multiply the first row by 3 and then add it to the second row to get

17a = 10 resulting in |a = %—g . By putting this value of a into one of the equations one gets

11



