Let us examine the behavior of the function

$$f(x) = \frac{x^2 - 1}{x - 1}$$
  $x \neq 1$ 

for the points close to x = 1. As you see in the following table as we approach the point x = 1the values of the function approach the value L = 2. We describe this issue using the notation  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$ 

| point x | value of the function<br>(x^2-1)/(x-1) | point x | value of the function<br>(x^2-1)/(x-1) |
|---------|----------------------------------------|---------|----------------------------------------|
| 0.988   | 1.988                                  | 1.012   | 2.012                                  |
| 0.989   | 1.989                                  | 1.011   | 2.011                                  |
| 0.99    | 1.99                                   | 1.01    | 2.01                                   |
| 0.991   | 1.991                                  | 1.009   | 2.009                                  |
| 0.992   | 1.992                                  | 1.008   | 2.008                                  |
| 0.993   | 1.993                                  | 1.007   | 2.007                                  |
| 0.994   | 1.994                                  | 1.006   | 2.006                                  |
| 0.995   | 1.995                                  | 1.005   | 2.005                                  |
| 0.996   | 1.996                                  | 1.004   | 2.004                                  |
| 0.997   | 1.997                                  | 1.003   | 2.003                                  |
| 0.998   | 1.998                                  | 1.002   | 2.002                                  |
| 0.999   | 1.999                                  | 1.001   | 2.001                                  |

**Example**: Evaluate  $\lim_{x \to 1} (3x^2 - x + 1)$ 

**Solution**: As x gets close and closer to the value 1, the function values get arbitrarily close to 3. Therefore we can say that  $\lim_{x\to 1} 3x^2 - x + 1 = 3$ .

**Discussion**: When we approach the point a = 0 the values of the function  $f(x) = \frac{1}{x^2}$  become very large , and in fact the values of the function become <u>arbitrarily</u> large when we approach the point a = 0; see the graph. We describe this situation by writing

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Note that the  $\infty$  here is just a symbol and is not a number. So in this case we say that the limit does not exist, however we know that the values of the function get arbitrarily large when we approach a = 0. The values of function  $f(x) = \frac{-1}{|x+1|}$  get arbitrarily large negative values when we approach the point a = -1; we describe this situation by writing

$$\lim_{x \to -1} \frac{-1}{|x+1|} = -\infty$$

By looking at the graphs of these two functions, one can see that the line x = 0 is the vertical asymptote for both graphs.

**Example (section 2.2 exercise 26 )**: Find the limit  $\lim_{x\to a} \frac{|x-a|}{x^2-2ax+a^2}$ , where a is any number.

Solution:

$$= \lim_{x \to a} \frac{|x-a|}{(x-a)^2} = \lim_{x \to a} \frac{|x-a|}{|x-a|^2} = \lim_{x \to a} \frac{1}{|x-a|} = \infty$$

## Theorem (algebraic properties of the limit):

Suppose that the limits  $\lim_{x \to a} f(x) = A$  and  $\lim_{x \to a} g(x) = B$  exist. Then

(i)  $\lim_{x \to a} \{f(x) + g(x)\} = A + B$ , that is

$$\lim_{x \to a} \{f(x) + g(x)\} = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

(ii)  $\lim_{x \to a} \{ f(x) - g(x) \} = A - B$ , that is

$$\lim_{x \to a} \{ f(x) - g(x) \} = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

(iii)  $\lim_{x \to a} f(x) \, g(x) = A \, B$  , that is

$$\lim_{x \to a} f(x) g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

(iv)  $\lim_{x \to a} cf(x) = cA$ , c being an arbitrary constant , i.e.

$$\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x)$$

(v)  $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$  provided that  $B \neq 0$ , that is

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } B \neq 0$$

Example (technique of rationalization): Evaluate  $\lim_{x\to 0} \frac{\sqrt{2x+1}-\sqrt{3x+1}}{x}$ 

**Solution**: We cannot use the above theorem for this example because the divisor's limit is zero. Since the dividend has a limit of zero too, we use the "rationalization" technique:

$$= \lim_{x \to 0} \left\{ \frac{\sqrt{2x+1} - \sqrt{3x+1}}{x} \frac{\sqrt{2x+1} + \sqrt{3x+1}}{\sqrt{2x+1} + \sqrt{3x+1}} \right\}$$
  
= 
$$\lim_{x \to 0} \left\{ \frac{(2x+1) - (3x+1)}{x(\sqrt{2x+1} + \sqrt{3x+1})} \right\} \text{ using the rule } (a-b)(a+b) = a^2 - b^2$$
  
= 
$$\lim_{x \to 0} \left\{ \frac{(-x)}{x(\sqrt{2x+1} + \sqrt{3x+1})} \right\} = \lim_{x \to 0} \left\{ \frac{(-1)}{(\sqrt{2x+1} + \sqrt{3x+1})} \right\} = \frac{-1}{2}$$

**Example (section 2.1 exercise 49)**: Assuming  $a \neq 0$ , use the rationalization technique to evaluate the limit

$$\lim_{x \to 0} \frac{\sqrt{x^2 + a^2} - \sqrt{2x^2 + a^2}}{\sqrt{3x^2 + 4} - \sqrt{2x^2 + 4}}$$

Solution:

$$= \lim_{x \to 0} \left( \frac{\sqrt{x^2 + a^2} - \sqrt{2x^2 + a^2}}{\sqrt{3x^2 + 4} - \sqrt{2x^2 + 4}} \right) \left( \frac{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \right) \left( \frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}} \right)$$
$$= \lim_{x \to 0} \left( \frac{(x^2 + a^2) - (2x^2 + a^2)}{(3x^2 + 4) - (2x^2 + 4)} \right) \left( \frac{1}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \right) \left( \frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{1} \right)$$
$$= \lim_{x \to 0} \left( \frac{-x^2}{x^2} \right) \left( \frac{1}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \right) \left( \frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{1} \right)$$
$$= \lim_{x \to 0} (-1) \left( \frac{1}{\sqrt{x^2 + a^2} + \sqrt{2x^2 + a^2}} \right) \left( \frac{\sqrt{3x^2 + 4} + \sqrt{2x^2 + 4}}{1} \right)$$
$$= (-1) \left( \frac{1}{2\sqrt{a^2}} \right) \left( \frac{2\sqrt{4}}{1} \right) = \frac{-2}{|a|}$$

**Example**: The functions  $\sqrt{1-x} - 3$  and  $2 + \sqrt[3]{x}$  become zero at the point x = -8. Factor them out in the form (x+8)g(x) and then find the limit  $\lim_{x\to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}}$ .

Solution: Step 1.

$$\sqrt{1-x} - 3 = \frac{(\sqrt{1-x}-3)(\sqrt{1-x}+3)}{\sqrt{1-x}+3} = \frac{(1-x)-9}{\sqrt{1-x}+3} = \frac{-x-8}{\sqrt{1-x}+3} = \frac{-(x+8)}{\sqrt{1-x}+3}$$
  
here  $g(x) = \frac{-1}{\sqrt{1-x}+3}$ 

**Step 2**. Using the identity  $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$  we have:

$$2 + \sqrt[3]{x} = \frac{(2 + \sqrt[3]{x}) \left\{ (2)^2 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}{\left\{ (2)^2 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}$$
$$= \frac{(2 + \sqrt[3]{x}) \left\{ 4 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}{\left\{ 4 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}$$
$$= \frac{8 - 4\sqrt[3]{x} + 2(\sqrt[3]{x})^2 + 4\sqrt[3]{x} - 2(\sqrt[3]{x})^2 + x}}{\left\{ 4 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}$$
$$= \frac{8 + x}{\left\{ 4 - (2)(\sqrt[3]{x}) + (\sqrt[3]{x})^2 \right\}}$$

Step 3.

$$\lim_{x \to -8} \frac{\sqrt{1-x}-3}{2+\sqrt[3]{x}} = \lim_{x \to -8} \frac{\frac{-(x+8)}{\sqrt{1-x+3}}}{\frac{8+x}{\left\{4-(2)(\sqrt[3]{x})+(\sqrt[3]{x})^2\right\}}} = -\lim_{x \to -8} \frac{\left\{4-(2)(\sqrt[3]{x})+(\sqrt[3]{x})^2\right\}}{\sqrt{1-x}+3} = -\frac{12}{6} = -2$$

**Example**: Find the limit  $\lim_{x\to 2^-} \frac{x^3-x-6}{|x-2|}$ 

Solution:

$$= \lim_{x \to 2^{-}} \frac{x^3 - x - 6}{-(x - 2)} = \lim_{x \to 2^{-}} \frac{(x - 2)(x^2 + 2x + 3)}{-(x - 2)} = \lim_{x \to 2^{-}} (x^2 + 2x + 3) = 11$$

Sometimes we are only allowed to approach a point from one side: for instance for the function  $\sqrt{x}$  we can approach the point a = 0 from the right only because the function is undefined on the left-hand side of that point. The right-hand limit at a point a is denoted by  $\lim_{x \to a^+}$  and the left-hand limit is denoted by  $\lim_{x \to a^-}$ . We have a similar list of algebraic properties of the right-hand limit and the left-hand limit.

Example (exercise 18 section 2.2): Evaluate  $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x^2}$ 

Solution:

$$= \lim_{x \to 0} \left\{ \frac{\sqrt{1+x}-1}{x^2} \, \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \right\} = \lim_{x \to 0} \frac{(1+x)-1}{x^2(\sqrt{1+x}+1)} = \lim_{x \to 0} \frac{x}{x^2(\sqrt{1+x}+1)} = \lim_{x \to 0} \frac{1}{x(\sqrt{1+x}+1)} = \lim_{x \to 0} \frac{1}{x(\sqrt{1+x}$$

But we have

$$\lim_{x \to 0^{-}} \frac{1}{x(\sqrt{1+x}+1)} = -\infty \quad \text{and} \quad \lim_{x \to 0^{+}} \frac{1}{x(\sqrt{1+x}+1)} = \infty$$

so the limit does not exist.

## Theorem (algebraic properties of the right-hand limit):

Suppose that the limits  $\lim_{x \to a^+} f(x) = A$  and  $\lim_{x \to a^+} g(x) = B$  exist. Then

(i)  $\lim_{x \to a^+} \{ f(x) + g(x) \} = A + B$ , that is

$$\lim_{x \to a^+} \{ f(x) + g(x) \} = \lim_{x \to a^+} f(x) + \lim_{x \to a^+} g(x)$$

(ii) 
$$\lim_{x \to a^+} \{f(x) - g(x)\} = A - B$$
, that is

$$\lim_{x \to a^+} \{ f(x) - g(x) \} = \lim_{x \to a^+} f(x) - \lim_{x \to a^+} g(x)$$

(iii) 
$$\lim_{x \to a^+} f(x) g(x) = A B$$
, that is

$$\lim_{x \to a^+} f(x) g(x) = \lim_{x \to a^+} f(x) \lim_{x \to a^+} g(x)$$

(iv)  $\lim_{x \to a^+} cf(x) = cA$ , *c* being an arbitrary constant , i.e.

$$\lim_{x \to a^+} c f(x) = c \lim_{x \to a^+} f(x)$$

(v)  $\lim_{x\to a^+} \frac{f(x)}{g(x)} = \frac{A}{B}$ , that is

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a^+} f(x)}{\lim_{x \to a^+} g(x)}$$

**Note**: A similar list holds for the left-hand limit.

**Theorem:** A limit  $\lim_{x\to a} f(x)$  exists if and only if both  $\lim_{x\to a^-} f(x)$  and  $\lim_{x\to a^+} f(x)$  exist and are equal. In this case, the three limits are equal.

**Discussion:** Some functions have this interesting property at a point a that  $\lim_{x\to a} f(x) = f(a)$ . Such functions are said to be continuous at x = a. Geometrically, there is no hole in the graph of the function at the point x = a. Examples of continuous function are: polynomials, trigonometric function, exponential function, the log functions, and the power functions.

**Example**: Let k be any real number. Find the value of k such that the function

$$f(x) = \begin{cases} 2 + kx & x \ge 1\\ 2k + 3x^2 & x < 1 \end{cases}$$

is continuous at x = 1.

**Solution**: We have f(1) = 2 + k. For the continuity to hold we must have both

$$\begin{cases} \lim_{x \to 1^+} f(x) = f(1) \\ \lim_{x \to 1^-} f(x) = f(1) \end{cases}$$

The requirement  $\lim_{x \to 1^+} f(x) = f(1)$  is equivalent to  $\lim_{x \to 1^+} 2 + kx = 2 + k$  which is the same as the equality 2 + k = 2 + k which gives nothing. But the requirement  $\lim_{x \to 1^-} f(x) = f(1)$  is equivalent to  $\lim_{x \to 1^-} 2k + 3x^2 = 2 + k$  which is the same as 2k + 3 = 2 + k resulting in  $\boxed{k = -1}$ .

**Note**: For k = -1 this function becomes

$$f(x) = \begin{cases} 2-x & x \ge 1\\ -2+3x^2 & x < 1 \end{cases}$$

whose graph is



For k = 1 the function becomes

$$f(x) = \begin{cases} 2+x & x \ge 1\\ 2+3x^2 & x < 1 \end{cases}$$

whose graph is



**Example**: Find the values of *a* and *b* such that the function

$$f(x) = \begin{cases} a(x^2 + 1) - 2bx & x < 3\\ 4 & x = 3\\ 2a + 3bx & x > 3 \end{cases}$$

is continuous everywhere.

**Solution**: The function is continuous on the interval  $(-\infty, 3)$  because on this interval it is the same as the polynomial  $a(x^2+1)-2bx$  and we know that the polynomials are continuous. The function is continuous on the interval  $(3, \infty)$  because it a polynomial there, namely 2a + 3bx. The only point at which continuity is not guaranteed is the point x = 3 at which the rule of the function changes and the function behaves differently on both sides of this point. Now

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \left\{ a(x^2 + 1) - 2bx \right\} = 10a - 6b$$
$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} \left\{ 2a + 3bx \right\} = 2a + 9b$$

For this function to be continuous at x = 3 we must have

$$\begin{cases} \lim_{x \to 3^{-}} f(x) = f(3) \\ \lim_{x \to 3^{+}} f(x) = f(3) \end{cases} \Rightarrow \begin{cases} 10a - 6b = 4 \\ 2a + 9b = 4 \end{cases} \stackrel{simplifying}{\Rightarrow} \begin{cases} 5a - 3b = 2 \\ 2a + 9b = 4 \end{cases}$$

To solve this system, multiply the first row by 3 and then add it to the second row to get 17a = 10 resulting in  $a = \frac{10}{17}$ . By putting this value of a into one of the equations one gets  $b = \frac{16}{51}$ .