
Limits at infinity

Section 2.3

Note: An example of limit at infinity that we frequently use is this:

lim
x→±∞

1

x
= 0

♣ Theorem (algebraic properties of the limit at infinity): Suppose that the limits

lim
x→∞

f(x) = A and lim
x→∞

g(x) = B exist. Then

(i) lim
x→∞

{f(x) + g(x)} = A+B , that is

lim
x→∞

{f(x) + g(x)} = lim
x→∞

f(x) + lim
x→∞

g(x)

(ii) lim
x→∞

{f(x)− g(x)} = A−B , that is

lim
x→∞

{f(x)− g(x)} = lim
x→∞

f(x)− lim
x→∞

g(x)

(iii) lim
x→∞

f(x) g(x) = AB , that is

lim
x→∞

f(x) g(x) = lim
x→∞

f(x) lim
x→∞

g(x)

(iv) lim
x→∞

cf(x) = cA , c being an arbitrary constant , i.e.

lim
x→∞

c f(x) = c lim
x→∞

f(x)

(v) lim
x→∞

f(x)
g(x) = A

B provided that B ̸= 0, that is

lim
x→∞

f(x)

g(x)
=

lim
x→∞

f(x)

lim
x→∞

g(x)
if lim

x→∞
g(x) ̸= 0
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Note: A similar theorem holds for the limits of the type lim
x→−∞

0
0 and ∞

∞ and ∞−∞ are indeterminate forms

Note: In calculating a ”limit at infinity” if the limit is of the indeterminate form ∞
∞ then the

terms in the numerator and dominator with highest exponents are the dominant terms; see the

following examples:

Example: Evaluate the limit limx→−∞
√
(x+ 1)(x+ 2) + x

Solution: This limit is of the indeterminate form ∞−∞. This is how it is calculated:

= lim
x→−∞

{√
(x+ 1)(x+ 2) + x

}{√
(x+ 1)(x+ 2)− x

}
{√

(x+ 1)(x+ 2)− x
} = lim

x→−∞

(x+ 1)(x+ 2)− x2√
(x+ 1)(x+ 2)− x

= lim
x→−∞

3x+ 2√
(x+ 1)(x+ 2)− x

= lim
x→−∞

3x+ 2√
x2 + 3x+ 2− x

= lim
x→−∞

3x+ 2√
x2(1 + 3

x + 2
x2 )− x

= lim
x→−∞

3x+ 2

|x|
√

(1 + 3
x + 2

x2 )− x
= lim

x→−∞

3x+ 2

(−x)
√

(1 + 3
x + 2

x2 )− x
as x is eventually negative

= lim
x→−∞

3 + 2
x

−
√

(1 + 3
x + 2

x2 )− 1
by dividing by x

=
3

−2
✓

Example: Evaluate the limit limx→∞
√

(x+ 1)(x+ 2) + x

Solution: The limit is equal to ∞ because both terms
√

(x+ 1)(x+ 2) and x approach ∞. ✓

Example: Find the value of lim
x→∞

√
x3−x2+1+ 3√x4+2

4√x6−3x3+1− 5√x7+2x4+1

Solution:

= lim
x→∞

x
3
2

√
1− 1

x + 1
x3 + x

4
3 3

√
1 + 2

x4

x
3
2 4

√
1− 3

x3 + 1
x6 − x

7
5 5

√
1 + 2

x3 + 1
x7
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= lim
x→∞

x
3
2

{√
1− 1

x + 1
x3 + 1

x
3
2− 4

3

3

√
1 + 2

x4

}
x

3
2

{
4

√
1− 3

x3 + 1
x6 − 1

x
3
2− 7

5

5

√
1 + 2

x3 + 1
x7

}

= lim
x→∞

√
1− 1

x + 1
x3 + 1

x
1
6

3

√
1 + 2

x4

4

√
1− 3

x3 + 1
x6 − 1

x
1
10

5

√
1 + 2

x3 + 1
x7

=
1 + 0

1− 0
= 1 ✓

Definition: In either of the cases lim
x→−∞

f(x) = L or lim
x→∞

f(x) = L we say that the horizontal

line y = L is a horizontal asymptote of the function f .

Note: For a rational function R(x) = P (x)
Q(x) (P and Q being polynomials) , if the degrees of the

numerator and denominator are equal, then there exists a horizontal asymptote; the following

example describes this.

Example: Find the horizontal asymptotes of the function y = 2x3−2x−1
3x3+x2+x+1

solution:

lim
x→±∞

2x3 − 2x− 1

3x3 + x2 + x+ 1
= lim

x→±∞

2− 2
x2 − 1

x3

3 + 1
x + 1

x2 + 1
x3

=
2

3

So, the line y = 2
3 is the only horizontal asymptote.

3



Note: The vertical asymptotes of a function R(x) = P (x)
Q(x) (not necessarily a rational function)

are amongst the lines x = a where a is a root of the denominator. To decide which one of these

is a vertical asymptote you should evaluate the limits limx→a+ R(x) and limx→a− R(x) and if

one of them equals either of ±∞ then we have vertical asymptote at that point a. Here are two

examples:

Example (from the textbook): Find the vertical and horizontal asymptotes of the function

y = x2−16
x2+x−6

solution: Horizontal asymptotes:

lim
x→∞

x2 − 16

x2 + x− 6
= lim

x→∞

x2
(
1− 16

x2

)
x2

(
1 + 1

x − 6
x2

) = lim
x→∞

1− 16
x2

1 + 1
x − 6

x2

= 1

The limit lim
x→−∞

would result in the same answer , so the line y = 1 is the only horizontal

asymptote.

Vertical asymptotes:

x2 + x− 6 = 0 ⇒ x = −3 , 2
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lim
x→(−3)+

x2 − 16

x2 + x− 6
= lim

x→(−3)+

x2 − 16

(x+ 3)(x− 2)
=

(−5)

(0+)(−5)
= ∞

so the line x = −3 is a vertical asymptote.

lim
x→2+

x2 − 16

x2 + x− 6
= lim

x→2+

x2 − 16

(x+ 3)(x− 2)
=

(−5)

(5)(0+)
= −∞

so the line x = 2 is a vertical asymptote.

The graph of this function is shown on page 124.

Example: Find the vertical asymptotes of the function y = x2−2x−3
x2+3x+2

Solution: The roots of the denominator are x = −2 , −1

lim
x→(−2)+

x2 − 2x− 3

x2 + 3x+ 2
= lim

x→(−2)+

x2 − 2x− 3

(x+ 2)(x+ 1)
=

5

(0+)(3)
= ∞

So , the line x = −2 is a vertical asymptote.

lim
x→(−1)+

x2 − 2x− 3

x2 + 3x+ 2
= lim

x→(−1)+

(x+ 1)(x− 3)

(x+ 2)(x+ 1)
== lim

x→(−1)+

(x− 3)

(x+ 2)
=

−4

1
= −4

And the limit limx→(−1)−
x2−2x−3
x2+3x+2

would result in the same value of −4. Therefore , although

the point x = −1 is a root of the denominator however we do not have a vertical asymptote

there. So remember that

♣ a root of denominator is not necessarily a vertical asymptote ♣

Definition: If we have either lim
x→−∞

{
f(x)− (ax+ b)

}
= 0 or lim

x→∞

{
f(x)− (ax+ b)

}
= 0 we

say that the line y = ax+ b is an oblique asymptote of the function f .

Example: Using the long division divide x3 by x2 + x+ 1 :

x3 = (x2 + x+ 1)(x− 1) + 1

Divide both sides by x2 + x+ 1 :

x3

x2 + x+ 1
= x− 1 +

1

x2 + x+ 1
⇒ x3

x2 + x+ 1
− (x− 1) =

1

x2 + x+ 1
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Then

lim
x→±∞

x3

x2 + x+ 1
− (x− 1) = lim

x→∞

1

x2 + x+ 1
= 0

Therefore by definition, the line y = x− 1 is an oblique asymptote for the function x3

x2+x+1
.

Note: In a rational function (i.e. the quotient of two polynomials) with the degree of numerator

being one plus the degree of the denominator , we have an oblique asymptote. The example

above shows how to find its oblique asymptote.

♣ Sandwich Theorem: Let lim denote any of the limits lim
x→a

, lim
x→a+

, lim
x→a−

, lim
x→∞

, and

lim
x→−∞

. Let for the points close to the point where the limit is being calculated at we have

f(x) ≤ g(x) ≤ h(x) (so for example if the limit lim
x→∞

is being calculated then it is assumed that

we have the inequalities f(x) ≤ g(x) ≤ h(x) for all large x’s). If under these assumptions we

have lim f(x) = limh(x) = L then we have lim g(x) = L

♣ Theorem: Let lim denote any of the limits lim
x→a

, lim
x→a+

, lim
x→a−

, lim
x→∞

, and lim
x→−∞

. If

lim |f(x)| = 0 , then lim f(x) = 0.
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♣ Theorem (zero-times-bounded Theorem): Let lim denote any of the limits lim
x→a

, lim
x→a+

, lim
x→a−

, lim
x→∞

, and lim
x→−∞

. Let for the points close to the point where the limit is

being calculated at the function f remains bounded. Suppose further that lim g(x) = 0. Then

lim f(x)g(x) = 0.

Example: Evaluate

lim
x→∞

x3 + x2 sin(x2 + 1)

x3 + 1

Solution:

= lim
x→∞

x3
(
1 + 1

x sin(x
2 + 1)

)
x3

(
1 + 1

x3

) = lim
x→∞

1 + 1
x sin(x

2 + 1)

1 + 1
x3

=
1 + 0

1 + 0
= 1

noting that the term 1
x tends to zero while sin(x2 + 1) is bounded ,

therefore by an application of the zero-times-bounded theorem the limit

of 1
x sin(x

2 + 1) is zero.
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