Symmetry (odd and even functions)

The graphs of the functions

$$y = x^2$$
$$y = \sqrt{|x|}$$

are symmetric about the y-axis:

Such functions are called <u>even</u>. Note that for such functions the domain is symmetric about the *y*-axis and that in the domain we have f(-x) = f(x).

The graph of the function $y = x^5 - x$ is symmetric with respect to the origin. Such a function is called an <u>odd function</u>. Note that for such a function the domain is symmetric with respect to the origin and that in the domain we have f(-x) = -f(x). So:

Definition. A function is called **even** if its domain is symmetric with respect to the origin and has this property:

$$f(-x) = f(x)$$

Definition. A function is called <u>odd</u> if its domain is symmetric with respect to the origin and satisfies:

$$f(-x) = -f(x)$$

• These are the ways we algebraically verify that a function is even or odd or neither.

Example. The function $f(x) = \sqrt{|x|}$ is even because:

$$f(-x) = \sqrt{|-x|} = \sqrt{|x|} = f(x)$$

Example. The function $f(x) = x^5 - x$ is an odd function because:

$$f(-x) = (-x)^5 - (-x) = -x^5 + x = -(x^5 - x) = -f(x)$$

Page 2

Example. The function $f(x) = x^2 + x$ is neither odd nor even:

$$f(-x) = (-x)^2 + (-x) = x^2 - x$$

which is not equal to either of $f(x) = x^2 + x$ and $-f(x) = -x^2 - x$. Or you may check that its graph is neither symmetric with respect to the *y*-axis nor being symmetric with respect to the origin.

Note. Here we solved all parts of exercise 5 of part II of Lab 1 in class.

Fact. The trigonometric functions $\sin x$, $\tan x$, $\cot x$, and $\csc x = \frac{1}{\sin x}$ are <u>odd functions</u>. The functions $\cos x$ and $\sec x = \frac{1}{\cos x}$ (which is the reciprocal of $\sin x$) are <u>even functions</u>.

(odd functions)
$$\begin{cases} \sin(-x) = -\sin x \\ \tan(-x) = -\tan x \\ \cot(-x) = -\cot(x) \\ \csc(-x) = -\csc(x) \end{cases}$$
 (even functions)
$$\begin{cases} \cos(-x) = \cos x \\ \sec(-x) = \sec x \end{cases}$$

Example. Identify the function $f(x) = \sin(x+2) + |2x-1|$ as even, odd, or neither.

Solution:

$$f(-x) = \sin(-x+2) + |2(-x) - 1|$$

= $\sin(-x+2) + |-2x - 1|$
= $\sin(-x+2) + |2x+1|$

 So

$$\left\{ \begin{array}{l} f(-x) \neq f(x) \\ f(-x) \neq -f(x) \end{array} \right.$$

So this function is neither odd nor even.

Example. Identify the function $f(x) = 2 \sin(5x) + \frac{3x^7}{1+x^6}$ as even, odd, or neither.

Solution: Change x to -x to get f(-x) and then simplify as much as you can: $f(-x) = 2 \sin(-5x) + \frac{3(-x)^7}{1+(-x)^6}$ $= 2 \left(-\sin(5x) \right) + \frac{-3x^7}{1+x^6}$ $= -\left\{ 2 \sin(5x) + \frac{3x^7}{1+x^6} \right\}$ = -f(x)So this function is an odd function. **Example**. Identify the function $f(x) = 3 \cos(2x) + \frac{3x^3}{2x^5+x}$ as even, odd, or neither.

Solution: Change x to
$$-x$$
 to get $f(-x)$ and then simplify as much as you can:

$$f(-x) = 3 \cos(-2x) + \frac{3(-x)^3}{2(-x)^5 + (-x)}$$

$$= 3 \cos(2x) + \frac{-3x^3}{-2x^5 - x}$$

$$= \text{ cancel out a negative sign from the numerator and denominator}$$

$$= 3 \cos(2x) + \frac{3x^3}{2x^5 + x}$$

$$= f(x)$$
So this function is an even function.

Example. Identify the function $f(x) = 3 \tan(5x) + \frac{2x}{-2x^2 + 3x + 4}$ as even, odd, or neither.

Solution: Change x to -x to get
$$f(-x)$$
 and then simplify as much as you can:

$$f(-x) = 3 \tan(-5x) + \frac{2(-x)}{-2(-x)^2+3(-x)+4}$$

$$= -3 \tan(5x) + \frac{-2x}{-2x^2-3x+4}$$

$$= -3 \tan(5x) - \frac{2x}{-2x^2-3x+4}$$

$$\neq \begin{cases} f(x) = 3 \tan(5x) + \frac{2x}{-2x^2+3x+4} \\ -f(x) = -3 \tan(5x) - \frac{2x}{-2x^2+3x+4} \end{cases}$$
the difference is in the term 3x
So this function is neither odd nor even.