Questions for Lab Session 4 (Tuesday Feb. 2)

1. Solve exercise 6.2 of the textbook.

The following data is given:

x	-7	-4	-1	0	2	5	7
у	20	14	5	3	-2	-10	-15

- (a) Use linear least-squares regression to determine the coefficients m and bin the function y = mx + b that best fit the data.
- (b) Use Eq. (6.5) to determine the overall error.

Solution.

To comply with the model, the first column of X should be the input values x and the second column should be a column of ones.

$$X = \begin{bmatrix} -7 & 1 \\ -4 & 1 \\ -1 & 1 \\ 0 & 1 \\ 2 & 1 \\ 5 & 1 \\ 7 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} 20 \\ 14 \\ 5 \\ 3 \\ -2 \\ -10 \\ -15 \end{bmatrix}$$

Then

$$X' * X = \begin{bmatrix} 144 & 2\\ 2 & 7 \end{bmatrix} \qquad X' * Y = \begin{bmatrix} -360\\ 15 \end{bmatrix}$$

$$(X'*X)^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 0.0070 & -0.0020 \\ -0.0020 & 0.1434 \end{bmatrix}$$

$$(X'*X)^{-1}X'*Y = \begin{bmatrix} 0.0070 & -0.0020\\ -0.0020 & 0.1434 \end{bmatrix} \begin{bmatrix} 15\\ -360 \end{bmatrix} = \begin{bmatrix} -2.5398\\ 2.8685 \end{bmatrix} = \begin{bmatrix} m\\ b \end{bmatrix}$$

The polynomial: p(x) = -2.5398 x + 2.8685

The values of $p(\boldsymbol{x})$ at the \boldsymbol{x} values -7 , -4 , -1 , 0 , 2 , 5 , 7 are:

$$y_{\rm fitted} = \begin{bmatrix} 20.6474 \\ 13.0279 \\ 5.4084 \\ 2.8685 \\ -2.2112 \\ -9.8307 \\ -14.9104 \end{bmatrix}$$

The difference between this vector and the vector y is

$$y - y_{\text{fitted}} = \begin{bmatrix} 20\\ 14\\ 5\\ 3\\ -2\\ -10\\ -15 \end{bmatrix} - \begin{bmatrix} 20.6474\\ 13.0279\\ 5.4084\\ 2.8685\\ -2.2112\\ -9.8307\\ -14.9104 \end{bmatrix} = \begin{bmatrix} -0.6474\\ 0.9721\\ -0.4084\\ 0.1315\\ 0.2112\\ -0.1693\\ -0.0896 \end{bmatrix}$$

Squaring these values gives us:

$$(-0.6474)^2 + (0.9721)^2 + (-0.4084)^2 + (0.1315)^2 + (0.2112)^2 + (-0.1693)^2 + (-0.0896)^2 = 1.6295$$

We are asked to use linear least-squares regression to determine the coefficients m and b in the function that best fit the data. The Matlab function polyfit does the job for us. So here is the code:

$$\begin{split} \mathbf{x} &= [-7 \quad -4 \quad -1 \quad 0 \quad 2 \quad 5 \quad 7] \; ; \\ \mathbf{y} &= [20 \quad 14 \quad 5 \quad 3 \quad -2 \quad -10 \quad -15] \; ; \\ \mathbf{p} &= \texttt{polyfit}(\mathbf{x},\mathbf{y},1) \; ; \\ \texttt{a1} &= \texttt{p}(1) \; ; \\ \texttt{a0} &= \texttt{p}(2) \; ; \\ \texttt{y_fitted} &= \texttt{a1} * \texttt{x} + \texttt{a0} \; ; \\ \texttt{norm}(\texttt{y} - \texttt{y_fitted}) \wedge 2 \end{split}$$

By running this m-file one gets the same overall error 1.6295 we found above.

2. Solve exercise 6.6 of the textbook.

The following data is given:

x	1	2	3	5	8
у	0.8	1.9	2.2	3	3.5

Determine the coefficients m and b in the function $y = \left[m\sqrt{x} + b\right]^{\frac{1}{2}}$ that best fit the data. Write the equation in a linear form , and use linear least-squares regression to determine the values of the coefficients.

Solution.

We first write the model in the form

$$y^2 = m\sqrt{x} + b$$

which is now a linear model. To comply with this model, we put the squares of the output values y in the column Y. Further, the first column of X must be the values \sqrt{x} and the second column of X must be a column of ones.

$$X = \begin{bmatrix} 1 & 1 \\ 1.4142 & 1 \\ 1.7321 & 1 \\ 2.2361 & 1 \\ 2.8284 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} 0.64 \\ 3.61 \\ 4.84 \\ 9 \\ 12.25 \end{bmatrix}$$

Then

$$X' * X = \begin{bmatrix} 19 & 9.2108 \\ 9.2108 & 5 \end{bmatrix} \qquad X' * Y = \begin{bmatrix} 68.9013 \\ 30.3400 \end{bmatrix}$$

$$(X' * X)^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 0.4920 & -0.9064 \\ -0.9064 & 1.8697 \end{bmatrix}$$

$$(X'*X)^{-1}X'*Y = \begin{bmatrix} 0.4920 & -0.9064\\ -0.9064 & 1.8697 \end{bmatrix} \begin{bmatrix} 68.9013\\ 30.3400 \end{bmatrix} = \begin{bmatrix} 6.4015\\ -5.7246 \end{bmatrix} = \begin{bmatrix} m\\ b \end{bmatrix}$$

The required function is: $f(x) = \left[6.4015\sqrt{x} + -5.7246\right]^{\frac{1}{2}}$

The values of f(x) at the x values are:

$$y_{\text{fitted}} = \begin{bmatrix} 0.8228\\ 1.8244\\ 2.3159\\ 2.9308\\ 3.5188 \end{bmatrix}$$

The difference between this vector and the vector y is

$$y - y_{\text{fitted}} = \begin{bmatrix} 0.8 \\ 1.9 \\ 2.2 \\ 3 \\ 3.5 \end{bmatrix} - \begin{bmatrix} 0.8228 \\ 1.8244 \\ 2.3159 \\ 2.9308 \\ 3.5188 \end{bmatrix} = \begin{bmatrix} -0.0228 \\ 0.0756 \\ -0.1159 \\ 0.0692 \\ -0.0188 \end{bmatrix}$$

Squaring these values gives us:

$$(-0.0228)^{2} + (0.0756)^{2} + (-0.1159)^{2} + (0.0692)^{2} + (-0.0188)^{2} = 0.0248$$

3. Solve exercise 6.9 of the textbook.

In an electrophoretic fiber-making process, the diameter of the fiber , d , is related to the current flow, I. The following are measure during production:

Ι	300	300	350	400	400	500	500	650	650
d	22	26	27	30	34	33	33.5	37	42

The relation between the current and the diameter can be modeled with an equation of the form $d = a + b\sqrt{I}$. Use the data to determine the constants a and b that best fit the data.

Solution.

To comply with the model, we must put a column of ones as the first column of X and must put the values \sqrt{I} as the second column of it. The values of d form the column vector Y.

$$X = \begin{bmatrix} 1 & 17.3205 \\ 1 & 17.3205 \\ 1 & 18.7083 \\ 1 & 20 \\ 1 & 20 \\ 1 & 20 \\ 1 & 22.3607 \\ 1 & 22.3607 \\ 1 & 25.4951 \\ 1 & 25.4951 \end{bmatrix} \qquad Y = \begin{bmatrix} 22 \\ 26 \\ 27 \\ 30 \\ 34 \\ 33 \\ 33.5 \\ 37 \\ 42 \end{bmatrix}$$

Then

$$X' * X = \begin{bmatrix} 9 & 189.0609 \\ 189.0609 & 4050 \end{bmatrix} \qquad X' * Y = \begin{bmatrix} 284.5000 \\ 6117.6060 \end{bmatrix}$$
$$(X' * X)^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 5.7366 & -0.2678 \\ -0.2678 & 0.0127 \end{bmatrix}$$
$$(X' * X)^{-1}X' * Y = \begin{bmatrix} 5.7366 & -0.2678 \\ -0.2678 & 0.0127 \end{bmatrix} \begin{bmatrix} 284.5000 \\ 6117.6060 \end{bmatrix} = \begin{bmatrix} -6.1967 \\ 1.7998 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

The required function is: $f(x) = -6.1967 + 1.7998\sqrt{I}$

4. Solve exercise 6.10 of the textbook.

Determine the coefficients of the polynomial $y = a_2 x^2 + a_1 x + a_0$ that best the data given in problem 6.5:

x	-2	-1	0	1	2
У	1.5	3.2	4.5	3.4	2

Solution.

To comply with the model, we must put the squares x^2 of the input values as the first column of X, the input values x as the second column of X, and finally a column of ones as the last column of X.

	4	-2	1	1.5
	1	-1	1	3.2
X =	0		1	4.5
	1	1	1	3.4
	4	2	1 _	2

Then

$$X' * X = \begin{bmatrix} 34 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 5 \end{bmatrix} \qquad X' * Y = \begin{bmatrix} 20.6 \\ 1.2 \\ 14.6 \end{bmatrix}$$

Now use the Matlab function inv() to invert the matrix X' * X by commanding Matlab with inv(X' * X):

$$(X' * X)^{-1} = \begin{bmatrix} 0.0714 & 0 & -0.1429 \\ 0 & 0.1 & 0 \\ -0.1429 & 0 & 0.4857 \end{bmatrix}$$

$$(X' * X)^{-1}X' * Y = \begin{bmatrix} -0.6143\\ 0.1200\\ 4.1486 \end{bmatrix} = \begin{bmatrix} a_2\\ a_1\\ a_0 \end{bmatrix}$$

The required polynomial is: $p(x) = -0.6143 x^2 + 0.1200 x + 4.1486$

- 5. Solve exercise 6.20 of the textbook.
- 6. Solve exercise 8.2 of the textbook.
- 7. Solve exercise 6.31 of the textbook.