Higher-Order Partial Derivatives
section 12.5

For the function f(x,y) = x’y? + ye* we have

f
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Now we may calculate the second-order partial derivatives:
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Note. As we can see in this example, we have 8‘9 afy = a ax This is special case of the following
theorem:
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Theorem. If the functions f, and exist on all points of a disk centered at (a,b)
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(i.e. for the points close to (a,b)), and if these functions are continuous at (a,b), then we must have:
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f (a,b) = f
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Note. Note the way higher-order derivatives are shown in the notation d and in the “’subscript”

. . . . . I3f
notation. In subscript notation, fy, is meant to be (fy)y. For example fyy.y is the same as Ixyaxldy "

. I3f . . . .
For the notation IxIyaxTdy the order they appear is from right to left, but in the notation fyxyx they

appear from left to right.
Example. For the function f(x,y) = x’y* + ye* of the previous example calculate fyxy.

Solution.
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Definition. A function f(x,y) is said to be harmonicon a region R if
e it has continuous second-order partial derivatives in R , and

e it satisfies the Laplace’s Equation :
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at all points of the region R



Note. A similar definition holds for function f(x,y,z) but in this case the Laplace’s equation is
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Example (section 12.5 exercise 27). Show that the function f(x,y,z) = \/ﬁ is harmonic in the
X*+y*+z

region

R= {(x,y, z) + (qy,z) # (0,0,0)} the space minus the origin

Solution.
f(x,y,2) = (X +y> +22) 2
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fix = %(—X){(X2+y2+zz)_g}+(—X)%{(x2+y2+22)_3}
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In a similar manner (use symmetry) one can show:
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Now adding up these values, one gets:

fxx +fyy +1f,, =0



Further note the second order derivatives
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are continuous in the region R, so we infer that this function is harmonic over the region R.



