
Section 12.7

A brief on transformations

consider the transformation (another name for it: change of variable) x = rcosθ

y = r sinθ

The determinant ∣∣∣∣∣∣
∂x
∂ r

∂x
∂θ

∂ y
∂ r

∂y
∂θ

∣∣∣∣∣∣
is called the Jacobian determinant of (x,y) with respect to (r,θ) , and is denoted by ∂ (x,y)

∂ (r,θ) . Let us

calculate this determinant:∣∣∣∣∣∣
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

∣∣∣∣∣∣=
∣∣∣∣∣∣ cosθ −r sinθ

sinθ r cosθ

∣∣∣∣∣∣= rcos2 θ + r sin2 θ = r(cos2 θ + sin2 θ) = r

Definition . If

 x = x(u,v)

y = y(u,v)
is a transformation , then the determinant

∂ (x,y)
∂ (u,v)

=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
is called the Jacobian determinant of the functions x and y in terms of the variables u and v. This

Jacobian is a function of the variables u and v see the next example).

Example . Find the Jacobian of the transformation

 x = u+3v2

y = u2 −uv
.

Solution .
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∂ (x,y)
∂ (u,v) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1 6v

2u−v −u

∣∣∣∣∣∣
= (−u)− (6v)(2u−v)

= −u−12uv+6v2 (this is a function of u and v)

Note . Sometimes we are interested in a particular value of the Jacobian. See the next example:

Example . In the previous example, what is the value of the Jacobian ∂ (x,y)
∂ (u,v) at the point where

(u,v) = (1,−1).

Solution .

∂ (x,y)
∂ (u,v)

∣∣∣∣
(u,v)=(1,−1)

= (−u−12uv+6v2)
∣∣
(u,v)=(1,−1) = 17

Fact . It is true that
∂ (u,v)
∂ (x,y)

=
1

∂ (x,y)
∂ (u,v)

This is a useful formula when it is difficult or impossible to find the inverse transformation u = u(x,y)

v = v(x,y)

Example . For the transformation  x = u3 +uv+v

y = v3 +uv+v

calculate ∂ (u,v)
∂ (x,y) at the point where (u,v) = (1,−1).

Solution . We are not able to calculate (u,v) in terms of (u,v) (the inverse transformation) therefore we
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cannot calculate ∂ (u,v)
∂ (x,y) directly. So we use the formula

∂ (u,v)
∂ (x,y)

=
1

∂ (x,y)
∂ (u,v)

By substituting u = 1 and v =−1 we get x =−1 and y =−3.

∂ (x,y)
∂ (u,v)

∣∣∣∣=
∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣=
∣∣∣∣∣∣ 3u2 +v u+1

v 3v2 +u+1

∣∣∣∣∣∣
∂ (x,y)
∂ (u,v)

∣∣∣∣
(u,v)=(1,−1)

=

∣∣∣∣∣∣ 2 2

−1 5

∣∣∣∣∣∣= 12 ⇒ ∂ (u,v)
∂ (x,y)

=
1

∂ (x,y)
∂ (u,v)

=
1

12

Definition . For a 3×3 transformation 
x = x(u,v,w)

y = y(u,v,w)

z = z(u,v,w)

the Jacobian (determinant) is defined by

∂ (x,y,z)
∂ (u,v,w)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣∣∣∣
This quantity enjoys a similar identity as in the two dimensional case:

∂ (x,y,z)
∂ (u,v,w)

=
1

∂ (u,v,w)
∂ (x,y,z)

Note . In general if we have an n×n system of equations such as:

y1 = f1(x1, , ... , xn)

y2 = f2(x1, , ... , xn)
...

yn = fn(x1, , ... , xn)
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then its Jacobian (determinant) is defined by:

∂ (y1, , ... , yn)

∂ (x1, , ... , xn)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

...
∂yn
∂xn

∂yn
∂x2

· · · ∂yn
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
the first row being the derivatives of y1
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Implicit Differentiation

Suppose we have a system of m equations with m+n unknowns:

F1(x1 , ... , xn , y1 , ... , ym) = 0

F2(x1 , ... , xn , y1 , ... , ym) = 0
...

Fm(x1 , ... , xn , y1 , ... , ym) = 0

We consider the n number of variables (the difference between m+n and m, i.e. the difference

between the number of unknowns and the number of equations) as independent variables. For

simplicity suppose that x1 , ... , xn are the independent variables, and so y1 , ... , ym are the dependent

variables. Then the first order partial derivatives of the dependent variables with respect to the

independent variables are calculated through:

∂yi

∂xk
=−

∂ (F1 , ... ,Fm)
∂ (y1 , ... ,xk , ... ,ym)

∂ (F1 , ... ,Fm)
∂ (y1 , ... ,yi , ... ,ym)

xk is sat the i-th place in th numerator

The denominator is the Jacobian with respect to the dependent variables.

Example . Consider the system xy2 +xzu+yv2 = 3

x3yz+2xv−u2v2 = 2

We must consider as many as 5−2 = 3 variables as independent ones. Let us consider the variables

(u,v) as the dependent variables and the variables (x,y,z) as the independent ones. Find ∂v
∂y at the point

with coordinates (x,y,z,u,v) = (1,1,1,1,1).

Solution . Set (the first step is the naming of the equations):
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 F(x,y,z,u,v) = xy2 +xzu+yv2 −3

G(x,y,z,u,v) = x3yz+2xv−u2v2 −2

Then, at the point with coordinates (1,1,1,1,1) we have:

∂ (F,G)

∂ (u,v)
=

∣∣∣∣∣∣ xz 2yv

−2uv2 2x−2u2v

∣∣∣∣∣∣=
∣∣∣∣∣∣ 1 2

−2 0

∣∣∣∣∣∣= 4

∂ (F,G)

∂ (u,y)
=

∣∣∣∣∣∣ xz 2xy+v2

−2uv2 x3z

∣∣∣∣∣∣=
∣∣∣∣∣∣ 1 3

−2 1

∣∣∣∣∣∣= 7

∂v
∂y

=−
∂ (F,G)
∂ (u,y)
∂ (F,G)
∂ (u,v)

=− 7
4

Example . Consider 4 variables which are tangled together through: u = x2 +xy−y2

v = 2xy+y2

(i) Consider x and y as functions of (u,v). Find ∂x
∂u at the point with (x,y) = (2 ,−1).

(ii) Now consider x and v as functions of y and u. Find ∂x
∂u at the point with (x,y) = (2 ,−1).

Solution to part (i) . We write the equations in the form: F(x,y,u,v) = x2 +xy−y2 −u

G(x,y,z,u,v) = 2xy+y2 −v

At the point with characteristics x = 2 and y =−1 we have:

6



∂x
∂u

=−
∂ (F,G)
∂ (u,y)
∂ (F,G)
∂ (x,y)

=

∣∣∣∣∣∣ −1 x−2y

0 2x+2y

∣∣∣∣∣∣∣∣∣∣∣∣ 2x+y x−2y

2y 2x+2y

∣∣∣∣∣∣
=−

∣∣∣∣∣∣ −1 4

0 2

∣∣∣∣∣∣∣∣∣∣∣∣ 3 4

−2 2

∣∣∣∣∣∣
=− −2

14
=

1
7

Solution to part (ii) . Now we are considering (x,v) as dependent variables. So:

∂x
∂u

=−
∂ (F,G)
∂ (u,v)
∂ (F,G)
∂ (x,v)

=

∣∣∣∣∣∣ −1 0

0 −1

∣∣∣∣∣∣∣∣∣∣∣∣ 2x+y 0

2y −1

∣∣∣∣∣∣
=−

∣∣∣∣∣∣ −1 0

0 −1

∣∣∣∣∣∣∣∣∣∣∣∣ 3 0

−2 −1

∣∣∣∣∣∣
=− 1

−3
=

1
3

Note . Consider an equation F(x,y) = 0 which actually describes a curve in the plane defined

implicitly (such as x3y2 −2xy+5 = 0). If y is considered as a function of x, then by applying the

implicit differentiation formula we learned for the general case, we will have:

∂y
∂x

=−

(
∂F
∂x

)
(

∂F
∂y

)

Note . Consider an equation F(x,y,z) = 0. If z is considered as a function of (x,y), then by applying

the implicit differentiation formula we learned for the general case, we will have:

∂ z
∂x

=−

(
∂F
∂x

)
(

∂F
∂ z

) ∂ z
∂y

=−

(
∂F
∂y

)
(

∂F
∂ z

)

Example (section 12.7 exercise 1) . Consider y as a function of x in the equation x3y2 −2xy+5 = 0.

Find dy
dx .
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Solution .

First Method . Put F(x,y) = x3y2 −2xy+5

dy
dx

=−

(
∂F
∂x

)
(

∂F
∂y

) =−3x2y2 −2y
2x3y−2x

Second Method . Differentiate both sides of x3y2 −2xy+5 = 0 with respect to x considering y as a

function of x (this is an elementary Calculus subject):

{
{x3}′{y2}+{x3}{y2}′

}
−2

{
{x}′{y}+{x}{y}′

}
= 0

{
{3x2}{y2}+{x3}{2yy′}

}
−2

{
{1}{y}+{x}{y′}

}
= 0

(3x2y2 −2y)+(2x3y−2x)y′ = 0

y′ =−3x2y2 −2y
2x3y−2x

Note . As you see, the first method is much simpler.

Example (section 12.7 exercise 5) . The variable z is defined implicitly as a function of x and y

through x2 sinz−yez = 2x. Find ∂z
∂x .

Solution . First Method . Put F = x2 sinz−yez −2x = 0

∂z
∂x

=−

(
∂F
∂x

)
(

∂F
∂z

) =− 2xsinz−2
x2 cosz−yez =

2−2xsinz
x2 cosz−yez
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Second Method . Differentiate the equation x2 sinz−yez = 2x with respect to x keeping in mind that

the derivative of y with respect to x is zero because in this question it is assumed that x and y are

independent and z is a function of them.

{
{x2}′{sinz}+{x2}{sinz}′

}
−
{
{y}′{ez}+{y}{ez}′

}
= {2x}′

{
{2x}{sinz}+{x2}{(cosz)z′}

}
−
{
{0}{ez}+{y}{ez z′}

}
= 2

{
{2x}{sinz}+{x2}{(cosz)z′}

}
+{y}{ez z′}

}
= 2

2xsinz+
(

x2 cosz+yez
)

z′ = 2

z′ =
2−2xsinz

x2 cosz+yez

Example (section 12.7 exercise 17) . Find
(

∂ s
∂u

)
v

if s = x2 +y2, and x and y are functions of u and v

defined by

u = x2 − y2 v = x2 − y

Solution . We are assuming that 
s = s(x,y)

x = x(u,v)

y = y(u,v)

(
∂ s
∂u

)
v
=

∂ s
∂x

∂x
∂u

+
∂ s
∂y

∂y
∂u

= (2x)
∂x
∂u

+(2y)
∂y
∂u

(∗)

Now to calculate ∂x
∂u and ∂y

∂u we need to apply the implicit differentiation technique because x and y are

not given explicitly in terms of u and v:
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 F(x,y,u,v) = x2 −y2 −u

G(x,y,u,v) = x2 −y−v

∂x
∂u

=−
∂ (F,G)
∂ (u,y)
∂ (F,G)
∂ (x,y)

=−

∣∣∣∣∣∣∣∣
∂F
∂u

∂F
∂y

∂G
∂u

∂G
∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

∣∣∣∣∣∣∣∣
=−

∣∣∣∣∣∣∣∣
−1 −2y

0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2x −2y

2x −1

∣∣∣∣∣∣∣∣
=− 1

−2x+4xy
=

1
2x−4xy

∂y
∂u

=−
∂ (F,G)
∂ (x,u)
∂ (F,G)
∂ (x,y)

=−

∣∣∣∣∣∣∣∣
∂F
∂x

∂F
∂u

∂G
∂x

∂G
∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

∣∣∣∣∣∣∣∣
=−

∣∣∣∣∣∣∣∣
2x −1

2x 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2x −2y

2x −1

∣∣∣∣∣∣∣∣
=− 2x

−2x+4xy
=

2x
2x−4xy

Now by putting these into (*) , one gets:

(
∂ s
∂u

)
v
= (2x)

(
1

2x−4xy

)
+(2y)

(
2x

2x−4xy

)
=

2x+2y
2x−4xy

=
x+y

x−2xy
✓
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