Synthetic Division

Example: One can easily check that the point x = 1 is a root of the polynomial

$$p(x) = 5x^6 - 4x^5 + 6x^4 - 18x^3 + 19x^2 - 9x + 1$$

So this polynomial is divisible by the linear factor x - 1. We now use the so called **synthetic** division to find the polynomial q(x) satisfying p(x) = (x - 1)q(x).

Solution:

		5	-4	6	-18	19	-9	1			
	1		5	1	-18 7	-11	8	-1			
		5	1	7	-11	8	-1	0	$\leftarrow \text{remainder}$		
So $q(x) = 5x^5 + x^4 + 7x^3 - 11x^2 + 8x - 1$											

Example: Divide the polynomial $p(x) = 4x^5 - 3x^4 + 2x^2 + 1$ by the linear polynomial x + 2 (we do not know at this time whether the polynomial is divisible by x + 2).

	4	-3	0	2	0	1						
-2		-8	22	-44	84	-168						
	4	-11	22	-42	84	-167						
(-2)(4) = -8												

So the remainder is -167 and we have

$$4x^{5} - 3x^{4} + 2x^{2} + 1 = (x+2)(4x^{4} - 11x^{3} + 22x^{2} - 42x + 84) - 167x^{4} + 26x^{4} + 10x^{4} + 10x^{$$

Long Division

Example: Divide $3x^4 + x^2 - x + 1$ by $x^2 + 1$

Solution: Set $p_0(x) = 3x^4 + x^2 - x + 1$ and $q(x) = x^2 + 1$. **Step 1**. Divide the highest degree term of $p_0(x)$ by that of q(x). We need $3x^2$

multiply q(x) by $3x^2 \implies 3x^4 + 3x^2 \xrightarrow{\text{change sign}} -3x^4 - 3x^2 \xrightarrow{\text{add to } p_0(x)} \Rightarrow$ $p_1(x) = -2x^2 - x + 1$

Step 2. Start over with $p_1(x)$ instead of $p_0(x)$:

Divide the highest degree term of $p_1(x)$ by that of q(x). We need |-2|

multiply q(x) by $-2 \implies -2x^2 - 2 \implies change sign \qquad 2x^2 + 2 \implies add to p_1(x) \implies add to p_1(x)$

$$p_2(x) = -x + 3$$

Since it is impossible to continue with another step, we stop here and declare that

$$p_0(x) = (3x^2 - 2)q(x) + (-x + 3)$$