The First Fundamental Theorem of Integral Calculus Section 6.4

First fundamental Theorem of Integral Calculus. If F is any antiderivative of the function f on the iterval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Convention. We usually use the notation $[F(x)]_{x=a}^{x=b}$ to refer to the difference $F(b)-F(a)$. The following example shows how to use this new notation:

Example. Evaluate the definite integral $\int_{-2}^{4} \sqrt{x+4} d x$

Solution. Using the change of variable $u=x+4$ we convert the associated indefinite integral to
$u=x+4 \Rightarrow d u=d x$
$\int \sqrt{x+4} d x=\int \sqrt{u} d u=\int u^{\frac{1}{2}} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}(x+4)^{\frac{3}{2}}+C$
Since any of the antiderivatives suffices for the evaluation of the definite integral, we take the case $C=0$, i.e. we take the antiderivative $\frac{2}{3}(x+4)^{\frac{3}{2}}$.

Then
$\int_{-2}^{4} \sqrt{x+4} d x=\left[\frac{2}{3}(x+4)^{\frac{3}{2}}\right]_{x=-2}^{x=4}=\frac{2}{3}\left[(x+4)^{\frac{3}{2}}\right]_{x=-2}^{x=4}$
$=\frac{2}{3}[16 \sqrt{2}-2 \sqrt{2}]=\left(\frac{2}{3}\right)(14 \sqrt{2})=\frac{28 \sqrt{2}}{3}$

Note. Since the evaluation of definite integrals roots back to the evaluation of indefinite integrals, and since the indefinite integral preserve addition and scalar multiplication, we have similar properties for the definite integrals:

Theorem. If f and g are continuous on $[a, b]$, then

$$
\begin{aligned}
\int_{a}^{b}[f(x)+g(x)] d x & =\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
\int_{a}^{b} k f(x) d x & =k \int_{a}^{b} f(x) d x \quad k \text { being a constant }
\end{aligned}
$$

