
second part of section 4.7

Example (from the textbook). A rectangular field is to be fenced on

three sides with 1000 m of fencing (the fourth side being a straight river

edge). Find the dimensions of the field in order that the area be as large

as possible.

Solution.

Water

x x

y

From the figure we have

area A = xy

where 2x+ y = 1000. Using this equality y = 1000− 2x we can transform

A into a function of one variable:

A(x) = x(1000− 2x) = 1000x− 2x2
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Since x and y are positive numbers (edges are positive) , we are restricted

to 0 < x < 500 in order for 2x+ y = 1000 to hold. This is the domain of

the function A(x)

A(x) = 1000x− 2x2 0 < x < 500

There is difference between this domain and the one that the textbook

chooses; the textbook chooses the closed interval 0 ≤ x ≤ 500 as the

domain.

We want to maximize A. For this we differentiate the function:

A′(x) = 1000− 4x

A′(x) = 0 ⇒ x =
1000

4
= 250

There are no points where A′(x) does not exist , therefore the only critical

point is x = 250 at which we have

A(250) = 125000

At the endpoints we calculate the limits: limx→0+ A(x) = 0

limx→500− A(x) = 0
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candidate x f(x) or lim f(x)

250 125000 absolute max

(not a candidate) 0 0

(not a candidate) 500 0

The following question is similar to exercise 62 of the list :

Section 4.7 exercise 23. Find the points on the hyperbola y2 − x2 = 9

closest to (4, 0)

Solution. The distance between two arbitrary points (x1 , y1) and (x2 , y2)

is found through the formula√
(x1 − x2)2 + (y1 − y2)2

Using this fact , if (x, y) an arbitrary point on the parabola , then its

distance from the point (4, 0) is√
(x− 4)2 + (y − 0)2 =

√
x2 − 8x+ 16 + y2 (1)

We want to minimize this distance. But on the parabola we have y2 =

9 + x2 ,therefore the quatity (1) reduces to√
2x2 − 8x+ 25

But since we are looking for the ideal point (x, y) , we can equivalently
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minimize the square of this expression , which is:

f(x) = 2x2 − 8x+ 25 −∞ < x < ∞

Here is how: f ′(x) = 4x− 8

f ′(x) = 0 ⇒ x = 2

But:


limx→−∞ f(x) = limx→−∞(2x2 − 8x+ 25) = +∞

limx→∞ f(x) = limx→∞(2x2 − 8x+ 25) = +∞

So we can form the following table:

candidate x f(x) or lim f(x)

2 17 absolute min

(not a candidate) −∞ +∞

(not a candidate) ∞ +∞

Note that for x = 2 we have

y2 = 9+x2 = 13 ⇒ y = ±
√
13 ⇒ (x, y) = (2 , −

√
13) , (2 ,

√
13)

Section 4.7 exercise 41 (modified). Two corridors , both 3 m wide,
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meet at right angles. Find the length of the longest beam that can be

transported horizontally around the corner. Ignore the dimensions of the

beam.

A

C

B

D
θ

θ

3

3

Solution. The length of longest transportable beam is the length of small-

est line segment AC that can pass through the fixed point B at the corner

(this was explained in class). But

(length of AC) ∥AC∥ = ∥AB∥+ ∥BC∥

But :

∥AD∥ = ∥AB∥ cos θ ⇒ ∥AB∥ = ∥AD∥ sec θ = 3 sec θ

Similarly,

∥BC∥ = 3 csc θ

5



Then :

∥AC∥ = ∥AB∥+ ∥BC∥ = 3 sec θ + 3 csc θ 0 < θ < π
2

We need to minimize the length function

f(θ) = 3 sec θ + 3 csc θ 0 < θ < π
2

f ′(θ) = 3 sec θ tan θ − 3 csc θ cot θ = 3 sin θ
cos2 θ −

3 cos θ
sin2 θ

f ′(θ) = 0 ⇒ 3 sin θ
cos2 θ = 3 cos θ

sin2 θ
⇒ tan3 θ = 1

⇒ tan θ = 1 ⇒ θ = π
4 radians

For this value of θ we have f(π4 ) = 6
√
2

But also:
limθ→0+ f(θ) = limθ→0+ 3 sec θ + 3 csc θ = +∞

lim
θ→(π

2 )
+ f(θ) = limθ→0+ 3 sec θ + 3 csc θ = +∞

candidate θ f(θ) or lim f(θ)

π
4 6

√
2 absolute min

(not a candidate) 0 ∞

(not a candidate) π
2 ∞

Therefore the length of the longest beam is 6
√
2.

Example. Let v1 and v2 be the velocities of light in air and in water. A

ray of light travels from the point A in the air to the point B in the

water in such a way that the travel time is minimized. Using the figure
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shown below prove the Snell’s Law:

sin θ1
sin θ2

=
v1
v2

A

B

θ1

θ2
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Solution. Denote by d the horizontal distance between A and

B. We denote the distance between A and the water surface by

a, and denote the distance between B and the water surface by b.

d−xx

a

b

B

θ1

θ2

A

C
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travel time from A to C = ∥AC∥
v1

=
√
a2+x2

v1

travel time from C to B = ∥CB∥
v2

=

√
(d−x)2+b2

v2

Add up the two values to get the total travel time:

T (x) =
√
a2+x2

v1
+

√
(d−x)2+b2

v2

= 1
v1
(a2 + x2)

1
2 + 1

v2
((d− x)2 + b2)

1
2 0 ≤ x ≤ d

Now differentiate:

T ′(x) = 1
2
1
v1
(a2 + x2)−

1
2(2x) + 1

2
1
v2

(
b2 + (d− x)2

)−1
2{−2(d− x)}

= x

v1
√
a2+x2

− d−x

v2
√

b2+(d−x)2

T ′(x) = 0 ⇒ x

v1
√
a2+x2

= d−x

v2
√

b2+(d−x)2
(1)

But from the figure we see that

sin θ1 =
x

∥AC∥
=

x√
a2 + x2

sin θ2 =
d− x

∥CB∥
=

d− x√
b2 + (d− x)2

Using these equalities , the equality (1) reduces to

sin θ1
v1

=
sin θ2
v2

(2)
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which is the required equality. It only remains to show that the

point satisfying (1) , or satisfying the equivalent equality (2) , is

indeed the point of absolute minimum. For this , we should

compare the value of T (x) at the point satisfying (1) with the

values: 
T (0) = a

v1
+ 1

v2
((d)2 + b2)

1
2

T (d) = 1
v1
(a2 + d2)

1
2 + b

v2

But , comparing these three values is not easy because the value

of T at x satisfying (1) cannot be calculated easily. Therefore,

we come up with another trick: The value of T ′(x) over the

interval 0 ≤ x ≤ d is only zero at the point x satisfying (1)

which for now we call x∗, therefore on the interval [0, x∗) the sign

of T ′(x) does not change , meaning that it is positive or negative

everywhere there. To check the sign of T ′(x) over that interval

we just need to check its sign at a particular point: for example
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we check it for x = 0 : we have

T ′(0) = − d

v2
√
b2 + d2

< 0 ⇒ T ′(x) < 0 for all x ∈ [0 , x∗)

In a similar fashion:

T ′(d) =
d

v1
√
a2 + d2

> 0 ⇒ T ′(x) > 0 for all x ∈ (x∗ , d]

Therefore we have the following table:

∣∣∣ x∗

T ′
∣∣∣ −

∣∣∣ +

T
∣∣∣ ↘

∣∣∣ ↗
absolute

min

Note. Exercise 50 of section 4.7 is basically a similar question and its

solution will be in the same lines (its solution is left to the students):

Section 4.7 exercise 50. An underground pipeline is to be constructed

between two cities A and B. ana analysis of the substructure indicates

that construction costs per kilometer in region I is c1 and for that of

region II is c2. Show that the total construction cost is minimized when

x is chosen so that c1 sin θ1 = c2 sin θ2
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Section 4.7 exercise 53 modified. The cost of fuel per hour for running

a ship varies directly as the cube of the speed, and is B = 100 dollars per

hour when the speed is s = 40 kilometers per hour. There are also fixed

costs of A = 200 dollars per hour. Find the most economical speed at

which to make a trip of 1000 kilometers.

Solution. The variable cost is k s3 where s is the speed. At s = 40 this

should be 100. Therefore

k(40)3 = 100 ⇒ k = 100
64000 =

1
640

So , the variable cost per hour is s3

640 . Then the total cost per hour is

200 + s3

640 0 < s < ∞

Since it takes 1000
s hours to complete the trip, the total cost for this trip is

C(s) = 1000
s

(
200 + s3

640

)
= 200000

s + 25
16 s

2 0 < s < ∞

We want to have the minimum cost , therefore we need to find the

absolute minimum of C(s). For this we follow the following steps:

C ′(s) = − 200000
s2 + 25

8 s

C ′(s) = 0 ⇒ 200000
s2 = 25

8 s ⇒ s3 = (200000)(8)
25 = 64000

⇒ s = 40

Also note that

lims→0+ C(s) = +∞

lims→∞C(s) = +∞

therefore we have the following table:
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candidate s C(s) or limC(s)

40 7500 absolute min

(not a candidate) 0 +∞

(not a candidate) ∞ +∞

Section 4.7 exercise 72. A right circular cone has radius 5 and height

15. A right circular cylinder is inscribed inside the cone so that its upper

edge is on the cone. Find the radius of the cylinder in order that its

surface area (including top, bottom, and side) be as large as possible.

Solution. Let the height of the cylinder be called h and its base’s radius

be called r. These quantities are variable. Let the area of the cylinder be
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denoted by A. Then

A = 2πr2 + 2πrh

But , this is a function of two unknowns h nd r ; we must remove one of

them in order to convert A to a function of one variable only. For this,

look at the following triangle cut from the :

r

h

15−h

5

From the similarity between triangles, we have

r

5
=

15− h

15
⇒ 15− h = 3r ⇒ h = 15− 3r

Substituting this value for h in the above equality , we will have A as a

function of r:

A(r) = 2πr2 + 2πr(15− 3r) = 2πr2 + 30πr − 6πr2

A(r) = 30πr − 4πr2 0 < r < 5
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Then

A′(r) = 30π − 8πr

A′(r) = 0 ⇒ 30π − 8πr = 0 ⇒ r = 30
8 ⇒ A(308 ) =

900π
16

We also have:  limr→0+ A(r) = 0

limr→5− A(r) = 50π

candidate r A(r) or limA(r)

30
8

900π
16 absolute max

(not a candidate) 0 0

(not a candidate) 5 50π

So the required radius is r = 30
8
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