PLNT4610 BIOINFORMATICS

MID-TERM EXAMINATION

08:30 - 9:45 Tuesday, October 23, 2012

Answer any combination of questions totalling to <u>exactly</u> 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points equal 100. This exam is worth 20% of the course grade.

Hand in this question sheet along with your exam book. All questions must be answered in the exam book. The exam sheets will be shreded after the exam.

- 1. (10 points) The Standard genetic code is shown below. If you think about comparing a DNA sequence verses a DNA database, or comparing a protein sequence vs. a protein database, how does the genetic code affect
 - a) the sensitivity of the search
 - b) the time required to do the search

TTT	F	Phe	TCT S	Ser	TAT \	/ Tyr	TGT	C	Cys
TTC	F	Phe	TCC S	Ser	TAC \	/ Tyr	TGC	C	Cys
TTA	L	Leu	TCA S	Ser	K AAT	^k Ter	TGA	*	Ter
TTG	L	Leu	TCG S	Ser	TAG *	* Ter	TGG	W	Trp
CTT			CCT P	Pro	CAT H	H His	CGT	R	Arg
CTC	L	Leu	CCC P	Pro	CAC F	H His	CGC	R	Arg
CTA	L	Leu	CCA P	Pro	CAA () Gln	CGA	R	Arg
CTG	L	Leu	CCG P	Pro	CAG () Gln	CGG	R	Arg
ATT	Ι	Ile	ACT T	Thr	AAT N	l Asn	AGT	S	Ser
ATC	Ι	Ile	ACC T	Thr	AAC N	l Asn	AGC	S	Ser
ATA	Ι	Ile	ACA T	Thr	AAA k	(Lys	AGA	R	Arg
ATG	М	Met	ACG T	Thr	AAG k	Lys	AGG	R	Arg
GTT			GCT A) Asp	GGT	G	Gly
GTC	٧	Val	GCC A) Asp	GGC	G	Gly
GTA		-	GCA A	Ala	GAA E	E Glu	GGA		
GTG	٧	Val	GCG A	Ala	GAG E	E Glu	GGG	G	Gly

- 2. (10 points) What is the sequence complexity of the DNA molecules below?
 - a) 5'GCACTGTCGACACCA5' 3'CGTGACAGCTGTGGT3'
 - b) 5'GCACTGCACTGCACT3' 3'CGTGACGTGACGTGA5'

3. (15 points) Create a table, similar to the one at right, that tells the time efficiency for each of the following tasks:

Choose from the following formulas for efficiency (one of them is NOT a correct answer):

O(mn), $O(k^2 2^k n^k)$, $O(n^4)$, O(n), $O(n^2)$

task	time efficiency
translate DNA to protein	
multiple sequence alignment	
sequence database search	
comparing a sequence with itself	
comparing two different sequences	

- 4. (15 points) The graph below illustrates scores from a FASTA search against a protein database. a) What is the distinction between the continuous curve and the diamonds?
- b) This is not a normal, or Gaussian, Distribution, but rather, an Extreme Value Distribution (EVD). Based on the shape of the curve, what can you say about the difference between normally-distributed data, and data that falls on an EVD?
- c) Draw a similar graph, showing what the curve would look like if many statistically significant "hits" were found in the database.

5. (5 points) It might seem trivial to generate the opposite strand of a sequence, so simple, in fact that you might be able to do it by a simple search and replace:

original sequence	AATCGTTTGCCCCCTA
replace A with 1	11TCGTTTGCCCCCCT1
replace G with 2	11TC2TTT2CCCCCCT1
replace T with A	11AC2AAA2CCCCCA1
replace C with G	11AG2AAA2GGGGGA1
replace 1 with T	TTAG2AAA2GGGGGGAT
replace 2 with C	TTAGCAAACGGGGGGAT

What is the problem with this approach?

- 6. (10 points) Answer the following questions about the table below:
- a) By random chance alone, what is the probability that an amino acid chosen from one protein will match a given amino acid from another protein?
- b) By random chance alone, what is the probability that a nucleotide from one DNA sequence will match a nucleotide from another DNA sequence?
- c) When comparing two amino acid sequences for similarity, if you use a k value of 3, how much would you expect to speed up the search?
- d) Typically, proteins are only a few hundred amino acids long. How might that affect the actual speedup of the algorithm, given a k value of 3?
- e) When comparing two DNA sequences, what is the probability a 20 base segment from one sequence will match a given 20 base segment from another sequence? Express the answer as an exponential number ie. scientific notation.

Table 2.	Avg. dist. between k-matches 1 p ^k										
Prob. of a match (p)	k = 2	3	4	5							
0.050	400	8000									
0.075	178	2370									
0.100	100	1000									
0.150	44	296									
0.200	25	125									
0.250	16	64	256	1024							
0.300	11	37	123	412							
0.350	8	23	67	190							
0.450	5	11	24	54							
0.600	3	5	8	13							
0.700	2	3	4	6							
0.900	1	1	1	2							

October 21, 2012

7. (20 points)

- a) (10 points) Describe how scoring matrices are used in pairwise sequence comparisons. What do the numbers in the matrix correspond to. Give a general description of how they are derived. To help you answer this question, the commonly-used Blosum 45 matrix is given below.
- b) (10 points) Also, draw a scoring matrix that could be used for comparing DNA sequences.

Blosum45 Amino Acid Similarity Matrix

```
G
  7
Ρ
  -2
D
  -1 -1
Ε
  -2
     0
        2
N
  0 -2 2
           0
Н
  -2 -2 0 0 1 10
Q
  -2
    -1 0 2 0 1
K
  -2
    -1 0 1 0 -1
                    1
    -2 -1 0 0
R
  -2
                0
                    1
S
  0
    -1 0 0 1 -1 0 -1 -1
T
  -2 -1 -1 -1 0 -2 -1 -1 -1
Α
  0 -1 -2 -1 -1 -2 -1 -1 -2
                            1
 -2 -2 -3 -2 -2 0 0 -1 -1 -2 -1 -1
M
  -3 -3 -3 -3 -3 -2 -2
                           -1
٧
                               0
                                  0
Ι
  -4
    -2 -4 -3 -2 -3 -2 -3 -3
                           -2 -1 -1
L
  -3
    -3 -3 -2 -3 -2 -3 -2
                           -3 -1 -1 2 1
                                           2
  -3 -3 -4 -3 -2 -2 -4 -3 -2 -2 -1 -2
                                     0 0 0 1
F
Υ
  -3 -3 -2 -2 -2 -1 -1 -1 -2 -1 -2
                                    0 -1
                                           0 0
                                                 3
  -2 -3 -4 -3 -4 -3 -2 -2 -2 -4 -3 -2
                                    -2 -3 -2 -2
W
                                                 1
                                                   3 15
  -3 -4 -3 -3 -2 -3 -3 -3 -1 -1 -1
C
                                    -2
                                       -1
                                          -3
                                             -2 -2
                                                  -3 -5
                                                        12
    P D E N H Q K
                         R S
                              Т
                                        V
                                           Ι
  G
                                  Α
                                     М
```

8. (15 points) Provide a word or phrase for a - e.

The programs CLUS	TAL and ICOFFEE	begin the process	of creating a n	nultiple alignment	by creating a
a t	oased on the	_b betw	een all sequenc	es in the dataset.	Next pairs of
sequences that are me	ost closely related to	each other are	C	by inserting gaps,	, if necessary.
The resultant pairwis	se alignment is referi	red to as a profil	e. The algorithr	m repeats by align	ning the most
closely-related	d to eac	h other. When all	sequences have	been included in t	he alignment,
the alignment is com	plete. Since CLUST.	AL/TCOFFEE us	e a heuristic ali	gnment algorithm,	, the resultant
alignment may not be	e thee	alignment.			

- 9. (15 points) On the following pages, two RNA retroviruses, Human Immunodeficiency Virus (HIV) and Simian immunodeficiency virus (SIV) are compared in a dot-matrix similarity search. As well, an abbreviated annotation for the HIV sequence is also attached, showing the CDS (protein coding) features. For brevity, the corresponding features of SIV are not included.
- a) Are all genes in HIV (ACCESSION NC_001802) also found in SIV (ACCESION NC_001549)?
- b) What can you say about the intergenic regions of HIV, compared to SIV?
- c) Are there any apparent major differences between the two genomes? What might be one possible explanation

D3HOM Version 8/13/2001
X-axis: >NC_001802 (HIV)
Y-axis: >NC_001549 (STV)
SIMILARITY RANGE: 25 MIN.PE
SCALE FACTOR: 0.95 COMPRE MIN.PERCENT SIMILARITY: 55 COMPRESSION: 75

SCALE F	ACTOR:		0.95	5	COM	PRESS1	ON:			75														
		750	1	150	0	225	50	300	0	37	50	456	00	525	0	600	10	675	0	7500)	8250	900	0
			V	Х	٠٧.								.х				. WW		. V				P QQ	
											•		:							i	I		R	
		:			:		:	W			٠١	N		x X			:			:		:	V	PQ
													•	W	•									VR .V
													:											
750	S J				· · · · ·				· 		. :				· 		· 							
		:								Х	:		:		:									
	0	R .			U	V	XX V		. v			w v	/.			V S	. v		.xx	w .			w x	•
		Q . S.			Ü	•	W						١.			Т						х.	W	
	W		. W	V				<		w			:		. W	W	X		. v	:		W W	/ WW W	
			PR		. W		. V				X.		:		:		. W				W X			
1500	W		.ST.						W. . W		٠.		• •	vv	 W		U	W	.X			 W		
			N	IL									U	W							•			
				XS WOK			.x		'. 				W	V			. W		X					
		w .		V JI NO			W		U W		:		:	WW	:		:			:		W.		
	X		V		.s	U		Х			X۱ ۱.		. X	X								:		
2250	W	١.			.TX		. W		.UU I	J				\. \.								W .		
2250	w		W		. X							XW	W											
		W.				R	W		:		:		:		. W	VW				۷.	Х		IV W	
		W .			. X	MK \	/ .				:	>	٠.			h	I.	W	W		X	:		
					. x	0).			.1	W.								W					
		. W.			. x	ΧL	MXX		۷ ,	V			J.	V 1.		WX	. w		. W	U.	•			
3000		U.			W		PI MM.		· · · · ·					X W	'. 		.W V			W .	x.			
		w .		W			. QP . 01	N		Х			:			×			. W	W .	I X	W .	W	
		W .						JJ VQ							U							٧.		
		. :						Т			v	>	ζ.		X		. w							
	W	:			:	V	VT	PN VK		W	:		(. /.V		:			Х	. x	:	٧	:		
	٧	W.		W W	:		:	X L	.T W RU		۱. U				. V	V	. U . U						x u	
3750					 . U							V					 . V							
	V						. \	V W		Т							W						WW	
	^		Х				X			NL PPW		V					:	U						
		TT						X W		MN P	:	Х	:		:	٧	. W		. V W T	:			XW W	
		W .	V				W		. x	0	T. SM		:									:		
4500		W.				X			W		WMI	N W NP.W.VV	WW			V	. x	W	. W .UU	W .	WW		Х	
4500		w .		v.		^			WW \	N		ONW V V		x				X V					x	
		:			:		:		XU . W	W	:	WILV		W	. W	T W	:		. W		X W		V	
		:			:		:				:	OR VU \	/.				:					:		
			Х									VU \ SL WKS		W				W		х.			X W TV	
						.	.W	V			:	W N	RM		:					۸.			XW	
5250		:			· · · · ·	V	٧X		· · · · · ·			.U	KK .MI	RV	· ·			W		W				· · · · · · ·
		:					:		. X				:							U. W.	W	:	Х	
		IIT		W W	W	WV	. v		V X				. W	V				٧						
		٧.	W			WV	. v		· ·		:			0										
		W.					:						:		. V	WW	:	Х				:		:
			W				:						U			U	:							
		•														_				•				

	750	1500	225	0 3000	0 375	0	4500	5250	0 600	00 675	0 750	0 825	9000
6000				.x				x.					
	W .								. 0		. W	•	
	W .				W V . X		X .		. PU	. v		. X U	
	:			•	v . X	:	w V.		. V . VT (. v). T X	v		. x w .
						Х	V						. W .
			•	-						.W	·	•	. V.
	х.		•	•	•		٧.		•	. S V			
	^ .					Ü	w .		. W	. ^	.x	. w	
6750			W		.WV.W					W			.W
			.X W			W			. W W		. W X	-	.x .
					W	:				. OP	-		· ·
	W .		. ۷۷ '		. v u	i. '	w v .		. W VV	.W W V WV	. QQ V	. x	
					. W						.W WW		
		W .	. W V	V X	.UWT W V	•	W	V W	•	. W .W X	.X W W	. x	
				. ^x		w					. SR V		
		Χ .			. W	٠٧			. V	. X	. R W V	-	
7500		W			X	X							
			. w			:					. w		· ·
	W .			. X			U.			. V	. т		
		1.0.1			. V					. W	. 0		
		WW .	•	•	•	. U			. X		. NM		
		X .										WU '	V .
		X .			•.					<.		. SP	. W .
8250		\v	N	. \	W		V Ww	' 		· · · · · · · · · · · · · · · ·		. 0 W	. XW.
0230												. X	
			•								V	•	w .
	V	' .		. U		:	W	,	. V W	. W	. W		. W .
		т	•	•	•	•	. w			•		•	•
									•				. w .
			.x w				W			•	. W	•	.т .
		•		-	•	:	R.	-		•	.x w	•	
9000		X	.VVW	•		-				WW	U	· 	J
		٧ .					٠.						. R .
						. W		Х			•		. QQ . . V.
			•	. W		. w		X			•	•	. v. . QU
								X					. PQ
								W					Š
			•	•						•	•	•	
			•	•						•	•	•	

```
NC 001802:CDS5
GET0B
                Version 1.3.2 13 Jun 2004
Please cite: Fristensky B. (1993) Feature expressions:
                                                                        join
creating and manipulating sequence datasets.
Nucl. Acids Res. 21:5997-6003
                                                                                  5377
                                                                                                         5591
                                                                                  7925
                                                                                                         7970
NC 001802:CDS1
    join
                                                                    /gene="tat'
                                    1637
                                                                    /locus_tag="HIV1gp5"
                                                                    /note="p14; transcriptional activator; viral regulatory
              1637
                                     4642
         )
                                                                    protein required for virus replication; transactivates the
                                                                    viral LTR promoter through interactions with cellular
                                                                    transcription factors; associated with pathogenic effects
                                                                    of the virus; the length of Tat varies depending on virus
/gene="gag-pol"
/locus_tag="HIV1gp1"
                                                                    strain or clade"
/note="fusion protein consisting of the viral structural
                                                                    /codon_start=1
proteins and enzymes; cleaved by the viral protease into
                                                                    /product="Tat'
individual mature proteins; The processing products of the
Gag and Gag-Pol polyproteins were annotated with the help
                                                                    NC 001802:CDS6
of Pettit et al., 2003 and references therein; Pr160;
                                                                        join
ribosomal slippage at slippery sequence ttttta
(1631..1637)"
                                                                                  5516
/codon start=1
                                                                                  7925
                                                                                                         8199
/product="Gag-Pol"
                                                                            )
NC 001802:CDS2
                                                                    /gene="rev"
                                                                    /locus_tag="HIV1gp6"
                                                                    /note="p19; regulator of expression of virion proteins;
     336
                  1838
                                                                    prevents splicing of viral RNA; shuttles unspliced viral
                                                                    RNA to the cytoplasm for expression of viral proteins and
/gene="gag"
                                                                    incorporation of full length viral genomic RNA into
/locus_tag="HIV1gp2"
                                                                    virions"
/note="The processing products of the Gag and Gag-Pol
                                                                    /codon_start=1
polyproteins were annotated with the help of Pettit et
                                                                    /product="Rev"
al., 2003 and references therein"
                                                                                      -----
/codon_start=1
                                                                    NC 001802:CDS7
/product="Pr55(Gag)"
                                                                                        5856
                                                                         5608
NC_001802:CDS3
                                                                    /gene="vpu"
                                                                    /locus_tag="HIV1gp7"
/note="p16; viral protein U; viral accessory protein
     4587
                   5165
                                                                    important for virus replication in vivo; promotes
                                                                    degradation of CD4 and down-regulates cell surface
/gene="vif"
                                                                    expression of MHC class I proteins; helps mediate
                                                                    efficient virus particle release from infected cells;
/locus_tag="HIV1gp3"
                                                                    reported to induce apoptosis by suppressing the nuclear
/note="p23; viral infectivity factor; viral accessory
                                                                    factor kappaB-dependent expression of antiapoptotic factors; may attenuate the level of Env precursor(gp160)
protein important for virus replication in vivo"
/codon start=1
                                                                    biosynthesis; Vpu and gp160 are translated from different reading frames of the same bicistronic mRNA"
/product="Vif"
           NC_001802:CDS4
                                                                    /codon_start=1
    join
                                                                    /product="Vpu"
                                                                                        _____
              5105
                                     5319
                                                                    NC 001802:CDS8
              5321
                                                                         5771
                                                                                        8341
         )
                                                                    /gene="env"
                                                                    /gene= env
/locus_tag="HIV1gp8"
/note="gp160; envelope glycoprotein; envelope polyprotein;
cleaved by cellular proteases into mature proteins gp120
/gene="vpr"
/locus tag="HIV1gp4"
/exception="artificial frameshift"
/note="p15; viral protein R; viral accessory protein
                                                                    and qp41
important for virus replication in vivo; involved in the
                                                                    /codon_start=1
nuclear import of the HIV-1 preintegration complex;
                                                                    /product="Envelope surface glycoprotein gp160, precursor"
induces G2 cell cycle arrest; influences mutation rates
during viral DNA synthesis; An artificial frameshift
                                                                    NC 001802:CDS9
eliminating the orf-disrupting nucleotide at position 5320
                                                                         8343
                                                                                        8963
is introduced to obtain the typical HIV-1 Vpr protein
sequence. For this particular HIV-1 strain, HXB2, only a
                                                                    /gene="nef"
short (78 amino acid long) variant of the Vpr sequence can
                                                                    /locus_tag="HIV1gp9"
                                                                    /note="p27; negative factor; viral accessory protein; important for virus replication in vivo; determinant of HIV-1 pathogenesis; down-regulates cell surface CD4 and
be obtained by translation of nucleotides 5105 through
5341 without the frameshift"
/codon_start=1
/product="Vpr"
                                                                    MHC class I molecules; enhances virus infectivity through;
             _____
                                                                    interactions with multiple cellular signaling proteins;
                                                                    This particular nucleotide sequence has a premature stop
                                                                    codon in place of a well-conserved tryptophan codon at
                                                                    position 8712-8714 that truncates the HIV1 Nef protein
                                                                    sequence to a 123 amino acids-long N-terminal portion (not
                                                                    /codon_start=1
                                                                    /transl_except=(pos:8712..8714,aa:Trp)
/product="Nef"
```