
1. Estimate the model: 

𝑤𝑎𝑔𝑒 =  𝛽0 + 𝛽1𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝛽3𝑚𝑎𝑙𝑒 + 𝜖 

What is the estimated return to an additional year of education? 

> summary(lm(wage ~ education + experience + male)) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -5.13303    2.02262  -2.538   0.0113 *   
education     3.03576    0.13544  22.415  < 2e-16 *** 
experience    0.21019    0.04473   4.699 2.99e-06 *** 
male        -12.39477    0.75894 -16.332  < 2e-16 *** 
--- 
 
The estimated returns to education are $3.04. That is, an additional year of 

education is estimated to increase earnings by $3.04 per hour. 

  



2. Using the same variables, estimate a log-lin model. What are the estimated 

returns to education? 

> summary(lm(log(wage) ~ education + experience + male)) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.927209   0.074628  25.824  < 2e-16 *** 
education    0.110600   0.004997  22.133  < 2e-16 *** 
experience   0.008980   0.001651   5.441 6.67e-08 *** 
male        -0.406692   0.028002 -14.523  < 2e-16 *** 
--- 

 

The coefficient of 0.110600 is interpreted as: for a 1 year increase in education, 

wage is estimated to increase by 11.06%. (This is the estimated returns to 

education). 

  



3. Estimate a polynomial regression model, which allows for education to have a 

non-linear effect on wage. Determine the appropriate degree, r, for the 

polynomial regression model. Report the results of any relevant t-tests. 

Include newly created variables into the regression model (it is now a 

polynomial regression model of degree r = 4): 

> educ2 <- education ^ 2 
> educ3 <- education ^ 3 
> educ4 <- education ^ 4 
> summary(lm(log(wage) ~ education + educ2 + educ3 + educ4 + experi
ence + male)) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.608e+00  4.519e-01   5.772 1.05e-08 *** 
education   -3.366e-02  2.258e-01  -0.149    0.882     
educ2        3.499e-03  3.696e-02   0.095    0.925     
educ3        6.395e-04  2.453e-03   0.261    0.794     
educ4       -2.815e-05  5.715e-05  -0.492    0.623     
experience   9.045e-03  1.645e-03   5.500 4.84e-08 *** 
male        -4.090e-01  2.786e-02 -14.681  < 2e-16 *** 
--- 



We fail to reject that educ4 is statistically insignificant (notice that the p-value 

is 0.623), this suggests that educ4 is not needed. We drop it from the model 

and re-estimate with r = 3: 

> summary(lm(log(wage) ~ education + educ2 + educ3 + experience + m
ale)) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.7904451  0.2590991  10.770  < 2e-16 *** 
education   -0.1370906  0.0829224  -1.653   0.0986 .   
educ2        0.0212451  0.0082321   2.581   0.0100 *   
educ3       -0.0005622  0.0002504  -2.245   0.0250 *   
experience   0.0090181  0.0016431   5.488 5.15e-08 *** 
male        -0.4087601  0.0278430 -14.681  < 2e-16 *** 
--- 
 

Now, we reject the null that educ3 is statistically insignificant. It should not be 

dropped from the model. The appropriate degree of polynomial is r = 3. 

  



4. Building on your model from question 3, estimate a model that allows 

education to have a different effect on wages, depending on whether the worker 

is male or female. 

In order to allow for education to have a different effect depending on gender, 

we must create some interaction terms and estimate the model: 

𝑤𝑎𝑔𝑒 =  𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑒𝑑𝑢𝑐2 + 𝛽3𝑒𝑑𝑢𝑐3 + 𝛽4𝑚𝑎𝑙𝑒 × 𝑒𝑑𝑢𝑐 + 𝛽5𝑚𝑎𝑙𝑒

× 𝑒𝑑𝑢𝑐2 + 𝛽6𝑚𝑎𝑙𝑒 × 𝑒𝑑𝑢𝑐3 + 𝛽7𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝛽8𝑚𝑎𝑙𝑒

+ 𝜖                                                                           (4.1) 

We create the three new variables by multiplying male by all instances of the 

“education” variable: 

> male_educ <- male * education 
> male_educ2 <- male * educ2 
> male_educ3 <- male * educ3 
  



Now, we include all of these interaction terms in our regression: 

> summary(lm(log(wage) ~ education + educ2 + educ3 + male_educ + ma
le_educ2 + male_educ3 + experience + male)) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.4995757  0.4178220   5.982 3.07e-09 *** 
education   -0.1745586  0.1313903  -1.329   0.1843     
educ2        0.0299745  0.0127863   2.344   0.0193 *   
educ3       -0.0008696  0.0003833  -2.269   0.0235 *   
male_educ    0.0955622  0.1681905   0.568   0.5700     
male_educ2  -0.0179645  0.0166043  -1.082   0.2796     
male_educ3   0.0006089  0.0005030   1.210   0.2264     
experience   0.0090942  0.0016205   5.612 2.60e-08 *** 
male         0.0043265  0.5230657   0.008   0.9934     
--- 

  



5. Using your models from question 3 and 4, test the hypothesis that the returns 

to education do not depend on gender. Report any relevant test results. 

The appropriate null hypothesis for this question is: 

𝐻0: 𝛽4 = 𝛽5 = 𝛽6 = 0 

This is a multiple hypothesis (it involves multiple betas), and we should use an 

F-test. This null hypothesis suggests a restricted model: 

𝑤𝑎𝑔𝑒 =  𝛽0 + 𝛽1𝑒𝑑𝑢𝑐 + 𝛽2𝑒𝑑𝑢𝑐2 + 𝛽3𝑒𝑑𝑢𝑐3 + 𝛽7𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝛽8𝑚𝑎𝑙𝑒

+ 𝜖                                  (5.1) 

This restricted model has been obtained by substituting the values for the betas 

in the null hypothesis (𝛽4 = 𝛽5 = 𝛽6 = 0) into equation (4.1). Note that this 

model has already been estimated in Question 3. 

The null hypothesis may now be tested by comparing model 4.1 (as the 

unrestricted model) to model (5.1) (as the restricted model). A version of the F-

test statistic formula (available on your formula sheet) is: 



𝐹 =
(𝑅𝑈

2 − 𝑅𝑅
2)/𝑞

(1 − 𝑅𝑈
2 )/(𝑛 − 𝑘𝑈 − 1)

 

The number of restrictions is 3, so that 𝑞 = 3. The number of betas in the 

unrestricted model (4.1) is 8, so that 𝑘𝑈 = 8. The sample size is 1000, so that 

𝑛 = 1000. The (unadjusted) R-square from the unrestricted model is 𝑅𝑈
2 =

0.4422. The R-square from the restricted model is 𝑅𝑅
2 = 0.4245. Substituting 

thes values into the F-statistic formula we get: 

𝐹 =
(0.4422 − 0.4245)/3

(1 − 0.4422)/(1000 − 8 − 1)
= 9.8333 

Comparing this F-statistic of 9.83 to the 5% critical value of  2.60 (see Table 7.1 

on page 94 of the text book) we reject the null hypothesis that there is no 

difference in the effect of education on earnings for men and for women. Note 

that the t-statistics on the betas involved in the null (0.568, -1.082, 1.210) tell 

quite a different story (they suggest we should fail to reject). 

  



6. Use your model from question 4. What is the estimated difference in the 

returns to education, between men and women? 

To interpret the effect of changes in education on wage, we need to consider 

different starting values for education (since we have estimated a polynomial 

regression model). Let’s begin by obtaining the predicted effect of a 1 year 

increase for males, with 12 years of education: 

𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=13,𝑚𝑎𝑙𝑒=1 − 𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=12,𝑚𝑎𝑙𝑒=1 = − 0.1745586(13) +

 0.0299745(132) − 0.0008696(133) + 0.0955622(13) −

 0.0179645(132) +  0.0006089(133) +  0.1745586(12) −

 0.0299745(122) +  0.0008696(123) −  0.0955622(12) +

 0.0179645(122) −  0.0006089(123) = 0.0989853 

Now, we get the same predicted effect, but for women: 

𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=13,𝑚𝑎𝑙𝑒=0 − 𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=12,𝑚𝑎𝑙𝑒=0 = −0.1745586(13) +

 0.0299745(132) − 0.0008696(133) +  0.1745586(12) −

 0.0299745(122) +  0.0008696(123) = 0.1669615 



So, we see that the estimated difference in the effect of an extra year of 

education for men and women is an extra 0.1669615 - 0.0989853 = $0.07 / 

hour for women. However, since this is a polynomial regression model, the 

effect of an extra year of education depends on the starting value for education. 

For example: 

𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=9,𝑚𝑎𝑙𝑒=1 − 𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=8,𝑚𝑎𝑙𝑒=1 = 0.0686017 

𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=9,𝑚𝑎𝑙𝑒=0 − 𝑤𝑎𝑔̂𝑒|𝑒𝑑𝑢𝑐=8,𝑚𝑎𝑙𝑒=0 = 0.1463047 

 

 


