Cigarette Consumption

- Law of demand
- Equation?
- Inverse demand
- What defines a line?
- What is it about this model that is important for policy makers who are trying to reduce smoking?
- Data: packpc - number of packs per capita, avgprs average price during fiscal year, including sales taxes
- U.S. data from 1985-1995 (Ecdat R package, original source Jonathan Gruber)

Price and Quantity of Cigarettes

- What is the econometric model?
- How should we estimate this model?
- How should we fit a line through the data?

```
> summary(7m(quantity ~ price))
Ca11:
1m(formula = quantity ~ price)
Residuals:
\begin{tabular}{rrrrr} 
Min & 10 & Median & 3Q & Max \\
-56.977 & -9.710 & -0.716 & 8.550 & 69.451
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
lrrrercept) 167.87737 1.0.79749 44.21 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.76 on 526 degrees of freedom
Multiple R-squared: 0.3427, Adjusted R-squared: 0.3415
F-statistic: 274.3 on 1 and 526 DF, p-value: < 2.2e-16
```

Price and Quantity of Cigarettes

Price of Diamonds

- What determines the price of a diamond?
- How can the "model" for diamond pricing be represented in an equation?
\bullet How is this useful?
- Data: price - price in Singapore \$s, carat - weight of diamond stones in carat unit
- From 2000, $n=308$ (Source Chu, Singfat (2001) "Pricing the C’s of Diamond Stones", Journal of Statistics Education, 9(2).)

Price of diamonds, by carats

> summary (7m(price ~ carat))
Ca11:
1m(formula = price \sim carat)
Residuals:
$\begin{array}{rrrrr}\text { Min } & 1 Q & \text { Median } & \text { 3Q } & \text { Max } \\ -2264.7 & -604.3 & -116.1 & 435.1 & 6591.5\end{array}$
Coefficients:

	Estimate	std. Error t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	-2298.4	158.5	-14.50	$<2 \mathrm{e}-16$	$* * *$
carat	11598.9	230.1	50.41	$<2 \mathrm{e}-16$	$\% * *$

Residual standard error: 1118 on 306 degrees of freedom
Multiple R-squared: 0.8925 , Adjusted R-squared: 0.8922
F-statistic: 2541 on 1 and 306 DF, p-value: < $2.2 \mathrm{e}-16$

Price of diamonds, by carats

Marginal Propensity to Consume

- What is it?
- Equation?
- Keynes said it should be less than 1
- Data: income - total disposable income (million Pounds, current prices), consumption - consumer expenditure (million Pounds, current prices)
- From U.K., 1971-1985 (quarterly), $n=58$ (References Verbeek, Marno (2004) A Guide to Modern Econometrics, John Wiley and Sons, chapters 8 and 9.)

Consumption and Income in the U.K.

> summary (1m(consumption ~ income))
Call:
1 m (formula $=$ consumption \sim income)
Residuals:

Min	$1 Q$	Median	3 Q	Max
-1804.00	-455.08	-57.85	388.88	2439.82

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 1.768e+02 $2.584 \mathrm{e}+02 \quad 0.684 \quad 0.497$
income 8.690e-01 7.497e-03 $115.911<2 e-16 \% * *$
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1
Residual standard error: 905.3 on 56 degrees of freedom
Multiple R-squared: 0.9958, Adjusted R-squared: 0.9958
F-statistic: 1.344e+04 on 1 and 56 DF, p-value: < $2.2 \mathrm{e}-16$

Consumption and Income in the U.K.

How should we

choose the line?
(estimate the intercept
and slope?)

