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Ch. 08 Introduction 

This example uses the “Current Population Survey” (CPS) dataset. There are 

61395 observations. 

> cps = 

read.csv("http://home.cc.umanitoba.ca/~godwinrt/3180/data/cps.csv") 

> attach(cps) 

> head(cps) 

        ahe female age northeast midwest south west yrseduc 

1 20.673077      0  31         0       0     1    0      14 

2 24.278847      0  50         0       0     1    0      12 

3 10.149572      0  36         0       0     1    0      12 

4  8.894231      1  33         0       0     1    0      10 

5  6.410256      1  56         0       0     1    0      10 

6 16.666666      1  52         0       0     1    0      12 

 

View the relationship between age and ahe: 

plot(age, ahe, pch = ".") 
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There are too many observations to see what’s going on. A useful command for 

large datasets is: 

smoothScatter(age,ahe) 

 

Let’s also look at the relationship between ahe and yrseduc: 

smoothScatter(yrseduc,ahe) 

 

As you look at these relationships, imagine trying to fit a regression “line” 

through the data. 
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It appears that age and yrseduc have a non-linear effect on ahe. In fact, many 

effects in economics are non-linear. For example, diminishing marginal utility, 

and increasing / decreasing returns-to-scale. 

 

In such cases, the effect on Y of a change in X depends on the value of X – that 

is, the marginal effect of X is not constant. 

 

How can we capture this using our linear regression model? One idea is based 

on a Taylor series approximation. See: 

http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.gif  

We won’t discuss the Taylor series here. 

  

http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.gif
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The idea is that non-linear functions can be approximated using polynomials. 

For example, a polynomial function is: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4 

This is a fourth-order polynomial. A second order polynomial is the familiar 

quadratic equation: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

 

Now, let’s try to capture the non-linear effect that age is having on ahe. 

But first, let’s see what happens when we fit a linear model: 

par(new=T) 

abline(lm(ahe ~ age))  

 

It doesn’t fit very well!  
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For the non-linear model, we first create new variables from age: 

age2 = age^2 

age3 = age^3 

age4 = age^4 

 

> summary(lm(ahe ~ age + age2 + age3 + age4)) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -6.905e+01  7.034e+00  -9.817  < 2e-16 *** 

age          7.146e+00  7.371e-01   9.694  < 2e-16 *** 

age2        -2.206e-01  2.795e-02  -7.892 3.01e-15 *** 

age3         3.092e-03  4.559e-04   6.782 1.19e-11 *** 

age4        -1.650e-05  2.706e-06  -6.097 1.09e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 9.842 on 61390 degrees of freedom 

Multiple R-squared:  0.05551,   Adjusted R-squared:  0.05545  

F-statistic:   902 on 4 and 61390 DF,  p-value: < 2.2e-16  
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