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The Least Squares Assumptions  
(SW Section 4.4) 

What, in a precise sense, are the properties of the OLS 

estimator?  We would like it to be unbiased, and to have a small 

variance.  Does it?  Under what conditions is it an unbiased 

estimator of the true population parameters? 

 

To answer these questions, we need to make some 

assumptions about how Y and X are related to each other, and 

about how they are collected (the sampling scheme) 

 

These assumptions – there are three – are known as the Least 

Squares Assumptions. 
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The Least Squares Assumptions  

     Yi = 0 + 1Xi + ui, i = 1,…, n 

 

1. The conditional distribution of u given X has mean zero, that 

is, E(u|X = x) = 0. 

This implies that 1̂  is unbiased 

2. (Xi,Yi), i =1,…,n, are i.i.d. 

 This is true if X, Y are collected by simple random 

sampling 

 This delivers the sampling distribution of 0̂  and 1̂  

3. Large outliers in X and/or Y are rare. 

 Technically, X and Y have finite fourth moments 

 Outliers can result in meaningless values of 1̂  
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Least squares assumption #1:   

E(u|X = x) = 0.  

Example: Test Scorei = 0 + 1STRi + ui, ui = other factors 

 What are some of these “other factors”? 

 Is E(u|X=x) = 0 plausible for these other factors? 
 

For any given value of X, the mean of u is zero: 
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A benchmark for thinking about this assumption is to consider an 

ideal randomized controlled experiment: 

 X is randomly assigned to people (students randomly assigned 

to different size classes; patients randomly assigned to 

medical treatments).  Randomization is done by computer – 

using no information about the individual. 

 Because X is assigned randomly, all other individual 

characteristics – the things that make up u – are 

independently distributed of X 

 Thus, in an ideal randomized controlled experiment,  

E(u|X = x) = 0 (that is, LSA #1 holds) 

 In actual experiments, or with observational data, we will 

need to think hard about whether E(u|X = x) = 0 holds. 
 

Least squares assumption #1, ctd. 
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Least squares assumption #2: 

(Xi,Yi), i = 1,…,n are i.i.d.  

This arises automatically if the entity (individual, district) is 

sampled by simple random sampling:  the entity is selected then, 

for that entity, X and Y are observed (recorded). 

 

The main place we will encounter non-i.i.d. sampling is when 

data are recorded over time (“time series data”) – this will 

introduce some extra complications. 
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Least squares assumption #3: Large outliers are 

rare Technical statement: E(X4) <  and E(Y4) <   

 A large outlier is an extreme value of X or Y 

 On a technical level, if X and Y are bounded, then they have 

finite fourth moments.  (Standardized test scores 

automatically satisfy this; STR, family income, etc. satisfy 

this too). 

 However, the substance of this assumption is that a large 

outlier can strongly influence the results 
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OLS can be sensitive to an outlier:  

 Is the lone point an outlier in X or Y? 

 In practice, outliers often are data glitches (coding/recording 

problems) – so check your data for outliers!  The easiest way 

is to produce a scatterplot. 
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The Sampling Distribution of the 
OLS Estimator 
(SW Section 4.5)  
The OLS estimator is computed from a sample of data; a 

different sample gives a different value of 
1̂ .  This is the source 

of the “sampling uncertainty” of 1̂ .  We want to: 

 quantify the sampling uncertainty associated with 1̂  

 use 1̂  to test hypotheses such as 1 = 0 

 construct a confidence interval for 1 

 All these require figuring out the sampling distribution of the 

OLS estimator.  Two steps to get there… 

 Probability framework for linear regression 

 Distribution of the OLS estimator 
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Probability Framework for Linear 
Regression  
The probability framework for linear regression is summarized 

by the three least squares assumptions. 

Population 

The group of interest (ex:  all possible school districts) 

Random variables: Y, X 

 Ex:  (Test Score, STR) 

Joint distribution of (Y, X) 

The population regression function is linear 

E(u|X) = 0 (1
st
 Least Squares Assumption) 

X, Y have finite fourth moments (3
rd

 L.S.A.) 

Data Collection by simple random sampling: 

{(Xi, Yi)}, i = 1,…, n, are i.i.d. (2
nd

 L.S.A.)  
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The Sampling Distribution of  
1 

ˆ  

Like Y , 
1̂  has a sampling distribution. 

 What is E(
1̂ )? (where is it centered?) 

 If E(
1̂ ) = 1, then OLS is unbiased – a good thing! 

 What is var(
1̂ )?  (measure of sampling uncertainty) 

 What is the distribution of 1̂  in small samples? 

 It can be very complicated in general 

 What is the distribution of 1̂  in large samples? 

 It turns out to be relatively simple – in large samples, 1̂  

is normally distributed. 
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The mean and variance of the sampling 

distribution of  
Some preliminary algebra: 

Yi = 0 + 1Xi + ui 

Y  = 0 + 1 X  + u  

so   Yi – Y  = 1(Xi – X ) + (ui – u ) 

Thus, 
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Substitute 
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Now we can calculate  E(    ) and  var(    ):  
1̂

  E( 1̂ ) – 1 =  1
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= 0   because E(ui|Xi=x) = 0 by LSA #1 

 Thus LSA #1 implies that E( 1̂ ) = 1 

 That is, 1̂  is an unbiased estimator of 1. 

 For details see App. 4.3 
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Next calculate var(   ):  
1̂

write 

1̂  – 1 =  1
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where vi = (Xi – X )ui (see App. 4.3).  Thus, 
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1̂  – 1  1
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Summary so far 

 1̂  is unbiased: E( 1̂ ) = 1 – just like Y ! 

 var( 1̂ ) is inversely proportional to n – just like Y ! 
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What is the sampling distribution of    ?  1̂
The exact sampling distribution is complicated – it depends 

on the population distribution of (Y, X) – but when n is large we 

get some simple (and good) approximations: 

(1) Because var( 1̂ )  1/n and E( 1̂ ) = 1, 1̂   
p

 1 

(2) When n is large, the sampling distribution of 
1̂  is 

 well approximated by a normal distribution (CLT) 

 

Recall the CLT:  suppose {vi}, i = 1,…, n is i.i.d. with E(v) = 0 

and var(v) = 2
.  Then, when n is large, 
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Large-n approximation to the 
distribution of    :  

1̂  – 1 =   1
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 When n is large, vi = (Xi – X )ui  (Xi – X)ui, which is i.i.d. 

(why?) and var(vi) <   (why?).  So, by the CLT, 
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The larger the variance of X, the 

smaller the variance of    
The math 

var( 1̂  – 1) = 
4
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X  = var(Xi).  The variance of X appears in its square in 

the denominator – so increasing the spread of X decreases the 

variance of 1. 

 

The intuition 

If there is more variation in X, then there is more information 

in the data that you can use to fit the regression line.  This is 

most easily seen in a figure… 
 

1̂
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The larger the variance of X, the 

smaller the variance of  1̂

There are the same number of black and blue dots – using which 

would you get a more accurate regression line? 
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Summary of the sampling distribution of    :  1̂

If the three Least Squares Assumptions hold, then 

 The exact (finite sample) sampling distribution of 1̂  has: 

  E( 1̂ ) = 1   (that is, 1̂  is unbiased)  

 var( 1̂ ) = 
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 Other than its mean and variance, the exact distribution of 1̂  

is complicated and depends on the distribution of (X,u) 

 1̂  
p

 1 (that is, 1̂  is consistent) 

  When n is large, 1 1
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 This parallels the sampling distribution of Y . 
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We are now ready to turn to hypothesis tests & confidence 

intervals… 
 


