Confidence Intervals for β_1 (Section 5.2)

Recall that a 95% confidence is, equivalently:

- The set of points that cannot be rejected at the 5% significance level;
- A set-valued function of the data (an interval that is a function of the data) that contains the true parameter value 95% of the time in repeated samples.

Because the *t*-statistic for β_1 is N(0,1) in large samples, construction of a 95% confidence for β_1 is just like the case of the sample mean:

95% confidence interval for $\beta_1 = \{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\}$

Confidence interval example: Test Scores and STR Estimated regression line: $TestScore = 698.9 - 2.28 \times STR$

$$SE(\hat{\beta}_0) = 10.4$$
 $SE(\hat{\beta}_1) = 0.52$

95% confidence interval for $\hat{\beta}_1$:

$$\{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\} = \{-2.28 \pm 1.96 \times 0.52\}$$

= (-3.30, -1.26)

The following two statements are equivalent (why?)

- The 95% confidence interval does not include zero;
- The hypothesis $\beta_1 = 0$ is rejected at the 5% level

A concise (and conventional) way to report regressions:

Put standard errors in parentheses below the estimated coefficients to which they apply.

 $TestScore = 698.9 - 2.28 \times STR, R^2 = .05, SER = 18.6$ (10.4) (0.52)

This expression gives a lot of information

• The estimated regression line is

 $TestScore = 698.9 - 2.28 \times STR$

- The standard error of $\hat{\beta}_0$ is 10.4
- The standard error of $\hat{\beta}_1$ is 0.52

• The R^2 is .05; the standard error of the regression is 18.6

OLS regression: reading STATA output

regress testscr str, robust

Regression	n with robust	standard e	rrors		Number of obs F(1, 418) Prob > F R-squared Root MSE	$= 19.26 \\ = 0.0000$
testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+ str _cons	-2.279808 698.933	.5194892 10.36436	-4.38 67.44	0.000 0.000	-3.300945 678.5602	-1.258671 719.3057

SO:

 $TestScore = 698.9 - 2.28 \times STR, R^2 = .05, SER = 18.6$ (10.4) (0.52)

 $t (\beta_1 = 0) = -4.38$, *p*-value = 0.000 (2-sided) 95% 2-sided conf. interval for β_1 is (-3.30, -1.26)

Summary of Statistical Inference about β_0 and β_1 : Estimation:

- OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$
- $\hat{\beta}_0$ and $\hat{\beta}_1$ have approximately normal sampling distributions in large samples
- **Testing**:
 - $H_0: \beta_1 = \beta_{1,0} \text{ v. } \beta_1 \neq \beta_{1,0} \ (\beta_{1,0} \text{ is the value of } \beta_1 \text{ under } H_0)$ • $t = (\hat{\beta}_1 - \beta_{1,0}) / SE(\hat{\beta}_1)$

p-value = area under standard normal outside t^{act} (large n)
 Confidence Intervals:

- 95% confidence interval for β_1 is $\{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\}$
- This is the set of β_1 that is not rejected at the 5% level
- The 95% CI contains the true β_1 in 95% of all samples.

Exercise 5.1

Suppose that a researcher, using data on class size (CS) and average test scores from 100 third-grade classes, estimates the OLS regression,

 $TestScore = 520.4 - 5.82 \times CS, R^2 = 0.08, SER = 11.5.$ (20.4) (2.21)

- a. Construct a 95% confidence interval for β_1 , the regression slope coefficient.
- b. Calculate the *p*-value for the two-sided test of the null hypothesis H₀: $\beta_1 = 0$. Do you reject the null hypothesis at the 5% level? At the 1% level?
- c. Calculate the *p*-value for the two-sided test of the null hypothesis H₀: $\beta_1 = -5.6$. Without doing any additional calculations, determine whether -5.6 is contained in the 95% confidence interval for β_1 .
- d. Construct a 99% confidence interval for β_0 .

Regression when X is Binary

(Section 5.3)

Sometimes a regressor is binary:

- X = 1 if small class size, = 0 if not
- X = 1 if female, = 0 if male
- X = 1 if treated (experimental drug), = 0 if not

Binary regressors are sometimes called "dummy" variables.

So far, β_1 has been called a "slope," but that doesn't make sense if *X* is binary.

How do we interpret regression with a binary regressor?

Interpreting regressions with a binary regressor

 $Y_i = \beta_0 + \beta_1 X_i + u_i$, where *X* is binary ($X_i = 0$ or 1):

When $X_i = 0$, $Y_i = \beta_0 + u_i$

- the mean of Y_i is β_0
- that is, $E(Y_i|X_i=0) = \beta_0$
- When $X_i = 1$, $Y_i = \beta_0 + \beta_1 + u_i$
 - the mean of Y_i is $\beta_0 + \beta_1$
 - that is, $E(Y_i|X_i=1) = \beta_0 + \beta_1$

so:

$$\beta_1 = E(Y_i|X_i=1) - E(Y_i|X_i=0)$$

= population difference in group means

Example: Let
$$D_i = \begin{cases} 1 \text{ if } STR_i \leq 20\\ 0 \text{ if } STR_i > 20 \end{cases}$$

OLS regression: TestScore = $650.0 + 7.4 \times D$ (1.3) (1.8)

Tabulation of group means:

Class Size	Average score (\overline{Y})	Std. dev. (s_Y)	N
Small (<i>STR</i> > 20)	657.4	19.4	238
Large ($STR \ge 20$)	650.0	17.9	182

Difference in means:
$$\overline{Y}_{\text{small}} - \overline{Y}_{\text{large}} = 657.4 - 650.0 = 7.4$$

Standard error: $SE = \sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}} = \sqrt{\frac{19.4^2}{238} + \frac{17.9^2}{182}} = 1.8$

Summary: regression when X_i is binary (0/1)

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- β_0 = mean of *Y* when *X* = 0
- $\beta_0 + \beta_1 = \text{mean of } Y \text{ when } X = 1$
- β_1 = difference in group means, X = 1 minus X = 0
- SE($\hat{\beta}_1$) has the usual interpretation
- *t*-statistics, confidence intervals constructed as usual
- This is another way (an easy way) to do difference-in-means analysis
- The regression formulation is especially useful when we have additional regressors (*as we will very soon*)

Exercise 5.2

Suppose that a researcher, using wage data on 250 randomly selected male workers and 280 female workers, estimates the OLS regression,

$$\widehat{Wage} = 12.52 - 2.12 \times Male, R^2 = 0.06, SER = 4.2,$$

(0.23) (0.36)

Where *Wage* is measured in \$/hour and *Male* is a binary variable that is equal to 1 if the person is a male and 0 if the person is a female. Define the wage gender gap as the difference in mean earnings between men and women.

- a. What is the estimated gender gap?
- b. Is the estimated gender gap significantly different from zero? (Compute the *p*-value for testing the null hypothesis that there is no gender gap.)
- c. Construct a 95% confidence interval for the gender gap.
- d. In the sample, what is the mean wage of women? Of men?
- e. Another researcher uses these same data, but regresses *Wages* on *Female*, a variable that is equal to 1 if the person is female and 0 if the person is a male. What are the regression estimates calculated from this regression?