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Heteroskedasticity and Homoskedasticity, 

and Homoskedasticity-Only Standard Errors  

(Section 5.4)  

 What…? 

 Consequences of homoskedasticity 

 Implication for computing standard errors 

 

What do these two terms mean? 

If var(u|X=x) is constant – that is, if the variance of the 

conditional distribution of u given X does not depend on X – 

then u is said to be homoskedastic.  Otherwise, u is 

heteroskedastic. 
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Homoskedasticity in a picture:  

 E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 

 The variance of u does not depend on x  
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Heteroskedasticity in a picture:  

 E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 

 The variance of u does depends on x: u is heteroskedastic. 
 



4 

A real-data example from labor economics:  

average hourly earnings vs. years of education 

(data source: Current Population Survey):  

Heteroskedastic or homoskedastic? 
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The class size data:  

Heteroskedastic or homoskedastic? 
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So far we have (without saying so) assumed 

that u might be heteroskedastic.  

Recall the three least squares assumptions: 

1. E(u|X = x) = 0 

2. (Xi,Yi), i =1,…,n, are i.i.d. 

3. Large outliers are rare 

 

Heteroskedasticity and homoskedasticity concern var(u|X=x).  

Because we have not explicitly assumed homoskedastic errors, 

we have implicitly allowed for heteroskedasticity. 
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We now have two formulas for 

standard errors for      
1̂

 Homoskedasticity-only standard errors – these are valid only 

if the errors are homoskedastic. 

 The usual standard errors – to differentiate the two, it is 

conventional to call these heteroskedasticity – robust 

standard errors, because they are valid whether or not the 

errors are heteroskedastic. 

 The main advantage of the homoskedasticity-only standard 

errors is that the formula is simpler.  But the disadvantage is 

that the formula is only correct in general if the errors are 

homoskedastic. 
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Practical implications…  
 The homoskedasticity-only formula for the standard error of 

1̂  and the “heteroskedasticity-robust” formula differ – so in 

general, you get different standard errors using the different 

formulas. 

 Homoskedasticity-only standard errors are the default setting 

in regression software – sometimes the only setting (e.g. 

Excel).  To get the general “heteroskedasticity-robust” 

standard errors you must override the default. 

If you don’t override the default and there is in fact 

heteroskedasticity, your standard errors (and wrong t-

statistics and confidence intervals) will be wrong – typically, 

homoskedasticity-only SEs are too small. 
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Heteroskedasticity-robust standard 

errors in STATA  
regress testscr str, robust 

 

Regression with robust standard errors            Number of obs =     420 

                                                  F(  1,   418) =   19.26 

                                                  Prob > F      =  0.0000 

                                                  R-squared     =  0.0512 

                                                  Root MSE      =  18.581 

------------------------------------------------------------------------- 

        |               Robust 

testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

--------+---------------------------------------------------------------- 

    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 

  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 

------------------------------------------------------------------------- 

 

 If you use the “, robust” option, STATA computes 

heteroskedasticity-robust standard errors 

 Otherwise, STATA computes homoskedasticity-only 

standard errors 
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The bottom line:  

 If the errors are either homoskedastic or heteroskedastic and 

you use heteroskedastic-robust standard errors, you are OK 

 If the errors are heteroskedastic and you use the 

homoskedasticity-only formula for standard errors, your 

standard errors will be wrong (the homoskedasticity-only 

estimator of the variance of 1̂  is inconsistent if there is 

heteroskedasticity). 

 The two formulas coincide (when n is large) in the special 

case of homoskedasticity 

 So, you should always use heteroskedasticity-robust standard 

errors. 
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Some Additional Theoretical 

Foundations of OLS (Section 5.5)  

We have already learned a very great deal about OLS: OLS is 

unbiased and consistent; we have a formula for 

heteroskedasticity-robust standard errors; and we can construct 

confidence intervals and test statistics. 

 

Also, a very good reason to use OLS is that everyone else 

does – so by using it, others will understand what you are doing.  

In effect, OLS is the language of regression analysis, and if you 

use a different estimator, you will be speaking a different 

language. 
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The Extended Least Squares 

Assumptions  

These consist of the three LS assumptions, plus two more: 

1. E(u|X = x) = 0. 

2. (Xi,Yi), i =1,…,n, are i.i.d. 

3. Large outliers are rare (E(Y
4
) < , E(X

4
) < ). 

4. u is homoskedastic 

5. u is distributed N(0,2
) 

 Assumptions 4 and 5 are more restrictive – so they apply to 

fewer cases in practice.  However, if you make these 

assumptions, then certain mathematical calculations simplify 

and you can prove strong results – results that hold if these 

additional assumptions are true. 

 We start with a discussion of the efficiency of OLS 
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Efficiency of OLS, part I:  The 

Gauss-Markov Theorem  

Under extended LS assumptions 1-4 (the basic three, plus 

homoskedasticity), 1̂  has the smallest variance among all linear 

estimators (estimators that are linear functions of Y1,…, Yn).  

This is the Gauss-Markov theorem. 

 

Comments 

 The GM theorem is proven in SW Appendix 5.2 
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Efficiency of OLS, part II:  

 Under all five extended LS assumptions – including normally 

distributed errors – 1̂  has the smallest variance of all 

consistent estimators (linear or nonlinear functions of 

Y1,…,Yn), as n . 

 This is a pretty amazing result – it says that, if (in addition to 

LSA 1-3) the errors are homoskedastic and normally 

distributed, then OLS is a better choice than any other 

consistent estimator.  And because an estimator that isn’t 

consistent is a poor choice, this says that OLS really is the best 

you can do – if all five extended LS assumptions hold.  (The 

proof of this result is beyond the scope of this course and isn’t 

in SW – it is typically done in graduate courses.) 
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Some not-so-good thing about OLS 

The foregoing results are impressive, but these results – and the 

OLS estimator – have important limitations. 

 

1. The GM theorem really isn’t that compelling: 

 The condition of homoskedasticity often doesn’t hold 

(homoskedasticity is special) 

 The result is only for linear estimators – only a small 

subset of estimators (more on this in a moment)   

 

2. The strongest optimality result (“part II” above) requires 

homoskedastic normal errors – not plausible in applications 

(think about the hourly earnings data!) 
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Limitations of OLS, ctd.  

3. OLS is more sensitive to outliers than some other estimators.  

In the case of estimating the population mean, if there are big 

outliers, then the median is preferred to the mean because the 

median is less sensitive to outliers – it has a smaller variance 

than OLS when there are outliers.  Similarly, in regression, 

OLS can be sensitive to outliers, and if there are big outliers 

other estimators can be more efficient (have a smaller 

variance).  One such estimator is the least absolute deviations 

(LAD) estimator: 
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In virtually all applied regression analysis, OLS is used – and 

that is what we will do in this course too. 
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Summary and Assessment  

(Section 5.7)  
 The initial policy question: 

Suppose new teachers are hired so the student-teacher 

ratio falls by one student per class.  What is the effect 

of this policy intervention (“treatment”) on test scores? 

 Does our regression analysis answer this convincingly? 

 Not really – districts with low STR tend to be ones with 

lots of other resources and higher income families, 

which provide kids with more learning opportunities 

outside school…this suggests that corr(ui, STRi) > 0, so 

E(ui|Xi) 0. 

 So, we have omitted some factors, or variables, from our 

analysis, and this has biased our results. 
 


