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The Least Squares Assumptions for 

Multiple Regression (SW Section 6.5)  

Yi = 0 + 1X1i + 2X2i + … + kXki + ui,  i = 1,…,n 

 

1. The conditional distribution of u given the X’s has mean 

zero, that is, E(u|X1 = x1,…, Xk = xk) = 0. 

2. (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 

3. Large outliers are rare: X1,…, Xk, and Y have four moments: 

E( 4

1iX ) <  ,…, E( 4

kiX ) <  , E( 4

iY ) <  . 

4. There is no perfect multicollinearity. 
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Assumption #1: the conditional mean of 

u given the included X’s is zero. 

E(u|X1 = x1,…, Xk = xk) = 0 

 

 This has the same interpretation as in regression with a 

single regressor. 

 If an omitted variable (1) belongs in the equation (so is in u) 

and (2) is correlated with an included X, then this condition 

fails 

 Failure of this condition leads to omitted variable bias 

 The solution – if possible – is to include the omitted 

variable in the regression. 
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Assumption #2:  (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 

This is satisfied automatically if the data are collected by 

simple random sampling. 

 

 

Assumption #3:  large outliers are rare (finite fourth 

moments) 

This is the same assumption as we had before for a single 

regressor.  As in the case of a single regressor, OLS can be 

sensitive to large outliers, so you need to check your data 

(scatterplots!) to make sure there are no crazy values (typos 

or coding errors). 
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Assumption #4:  There is no perfect multicollinearity 

Perfect multicollinearity is when one of the regressors is an 

exact linear function of the other regressors. 

 

Example: Suppose you accidentally include STR twice: 
 

regress testscr str str, robust 

Regression with robust standard errors            Number of obs =     420 

                                                  F(  1,   418) =   19.26 

                                                  Prob > F      =  0.0000 

                                                  R-squared     =  0.0512 

                                                  Root MSE      =  18.581 

------------------------------------------------------------------------- 

        |               Robust 

testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

--------+---------------------------------------------------------------- 

    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 

    str |  (dropped) 

  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 

------------------------------------------------------------------------- 
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Perfect multicollinearity is when one of the regressors is an 

exact linear function of the other regressors. 

 In the previous regression, 1 is the effect on TestScore of a 

unit change in STR, holding STR constant (???) 

 We will return to perfect (and imperfect) multicollinearity 

shortly, with more examples… 

 

With these least squares assumptions in hand, we now can derive 

the sampling dist’n of 1̂ , 2̂ ,…, ˆ
k . 
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The Sampling Distribution of the 

OLS Estimator (SW Section 6.6)  
Under the four Least Squares Assumptions, 

 The exact (finite sample) distribution of 1̂  has mean 1, 

var( 1̂ ) is inversely proportional to n; so too for 2̂ . 

 Other than its mean and variance, the exact (finite-n) 

distribution of 1̂  is very complicated; but for large n… 

 1̂  is consistent: 1̂  
p

 1 (law of large numbers) 

  1 1

1

ˆ ˆ( )

ˆvar( )

E 




 is approximately distributed N(0,1) (CLT) 

  So too for 2̂ ,…, ˆ
k  

Conceptually, there is nothing new here! 
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Multicollinearity, Perfect and 

Imperfect (SW Section 6.7)  

Some more examples of perfect multicollinearity 

 The example from earlier: you include STR twice. 

 Second example:  regress TestScore on a constant, D, and B, 

where: Di = 1 if STR ≤ 20, = 0 otherwise; Bi = 1 if STR >20,  

= 0 otherwise, so Bi = 1 – Di and there is perfect 

multicollinearity 

 Would there be perfect multicollinearity if the intercept 

(constant) were somehow dropped (that is, omitted or 

suppressed) in this regression? 

 This example is a special case of… 
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The dummy variable trap  

Suppose you have a set of multiple binary (dummy) 

variables, which are mutually exclusive and exhaustive – that is, 

there are multiple categories and every observation falls in one 

and only one category (Freshmen, Sophomores, Juniors, Seniors, 

Other).  If you include all these dummy variables and a constant, 

you will have perfect multicollinearity – this is sometimes called 

the dummy variable trap. 

 Why is there perfect multicollinearity here? 

 Solutions to the dummy variable trap: 

1. Omit one of the groups (e.g. Senior), or 

2. Omit the intercept 

 What are the implications of (1) or (2) for the interpretation of 

the coefficients? 
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Perfect multicollinearity, ctd.  

 Perfect multicollinearity usually reflects a mistake in the 

definitions of the regressors, or an oddity in the data 

 If you have perfect multicollinearity, your statistical software 

will let you know – either by crashing or giving an error 

message or by “dropping” one of the variables arbitrarily 

 The solution to perfect multicollinearity is to modify your list 

of regressors so that you no longer have perfect 

multicollinearity. 
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Imperfect multicollinearity  

Imperfect and perfect multicollinearity are quite different despite 

the similarity of the names. 

 

Imperfect multicollinearity occurs when two or more regressors 

are very highly correlated. 

 Why this term?  If two regressors are very highly 

correlated, then their scatterplot will pretty much look like a 

straight line – they are collinear – but unless the correlation 

is exactly 1, that collinearity is imperfect. 
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Imperfect multicollinearity, ctd.  

Imperfect multicollinearity implies that one or more of the 

regression coefficients will be imprecisely estimated. 

 Intuition: the coefficient on X1 is the effect of X1 holding X2 

constant; but if X1 and X2 are highly correlated, there is very 

little variation in X1 once X2 is held constant – so the data are 

pretty much uninformative about what happens when X1 

changes but X2 doesn’t, so the variance of the OLS estimator 

of the coefficient on X1 will be large. 

 Imperfect multicollinearity (correctly) results in large 

standard errors for one or more of the OLS coefficients. 

 The math?  See SW, App. 6.2 

 

Next topic: hypothesis tests and confidence intervals… 



Question 6.5 
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a) Homeowner converts part of an existing family room 

into bathroom. (What about converting a bedroom?) 

b) Adds a new (100 sq. Ft.) bathroom 

c) What is the loss in value of letting the house run-

down? 

d) Compute R2 

 


