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Nonlinear Regression Functions 

(SW Chapter 8)  

 Everything so far has been linear in the X’s 

 But the linear approximation is not always a good one 

 The multiple regression framework can be extended to handle 

regression functions that are nonlinear in one or more X. 

 

Outline 

1. Nonlinear regression functions – general comments 

2. Nonlinear functions of one variable 

3. Nonlinear functions of two variables: interactions 
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The TestScore – STR relation looks 

linear (maybe)… 
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But the TestScore – Income relation 

looks nonlinear...  



4 

Nonlinear Regression Population Regression 

Functions – General Ideas (SW Section 8.1)  

If a relation between Y and X is nonlinear: 

 

 The effect on Y of a change in X depends on the value of X – 

that is, the marginal effect of X is not constant 

 A linear regression is mis-specified – the functional form is 

wrong 

 The estimator of the effect on Y of X is biased – it needn’t 

even be right on average. 

 The solution to this is to estimate a regression function that is 

nonlinear in X 
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The general nonlinear population 

regression function  

Yi = f(X1i, X2i,…, Xki) + ui, i = 1,…, n 

 

Assumptions 

1. E(ui| X1i,X2i,…,Xki) = 0  (same); implies that f is the 

conditional expectation of Y given the X’s. 

2. (X1i,…,Xki,Yi) are i.i.d. (same). 

3. Big outliers are rare (same idea; the precise mathematical 

condition depends on the specific f). 

4. No perfect multicollinearity (same idea; the precise statement 

depends on the specific f). 
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Nonlinear Functions of a Single 

Independent Variable (SW Section 8.2)  

We’ll look at two complementary approaches: 

 

1.  Polynomials in X 

The population regression function is approximated by a 

quadratic, cubic, or higher-degree polynomial 

 

2.  Logarithmic transformations 

 Y and/or X is transformed by taking its logarithm 

 this gives a “percentages” interpretation that makes sense 

in many applications 
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1.  Polynomials in X  

Approximate the population regression function by a polynomial: 

 

Yi = 0 + 1Xi + 2
2

iX  +…+ r
r

iX  + ui 

 

 This is just the linear multiple regression model – except that 

the regressors are powers of X! 

 Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 

 The coefficients are difficult to interpret, but the regression 

function itself is interpretable 
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Example:  the TestScore – Income 

relation  
Incomei = average district income in the i

th
 district 

 (thousands of dollars per capita) 

 

Quadratic specification: 

 

TestScorei = 0 + 1Incomei + 2(Incomei)
2
 + ui 

 

Cubic specification: 

 

TestScorei = 0 + 1Incomei + 2(Incomei)
2
  

+ 3(Incomei)
3
 + ui 
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Estimation of the quadratic 

specification in STATA  
generate avginc2 = avginc*avginc;       Create a new regressor  

reg testscr avginc avginc2, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  2,   417) =  428.52 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5562 

                                                       Root MSE      =  12.724 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   3.850995   .2680941    14.36   0.000      3.32401    4.377979 

     avginc2 |  -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119 

       _cons |   607.3017   2.901754   209.29   0.000     601.5978    613.0056 

------------------------------------------------------------------------------ 

 

Test the null hypothesis of linearity against the alternative that 

the regression function is a quadratic…. 
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Interpreting the estimated 

regression function:  

(a)  Plot the predicted values 

·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

(2.9)  (0.27)              (0.0048) 
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Interpreting the estimated 

regression function, ctd:  
(b)  Compute “effects” for different values of X 

 

·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

 (2.9)  (0.27)              (0.0048) 

 

Predicted change in TestScore for a change in income from 

$5,000 per capita to $6,000 per capita: 

 

·TestScore = 607.3 + 3.85 6 – 0.0423 6
2
 

     – (607.3 + 3.85 5 – 0.0423 5
2
) 

    = 3.4 
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·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

 

Predicted “effects” for different values of X: 

 

Change in Income ($1000 per capita) ·TestScore 

from 5 to 6 3.4 

from 25 to 26 1.7 

from 45 to 46 0.0 

 

The “effect” of a change in income is greater at low than high 

income levels (perhaps, a declining marginal benefit of an 

increase in school budgets?) 

Caution!  What is the effect of a change from 65 to 66?   

Don’t extrapolate outside the range of the data! 
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Estimation of a cubic specification 

in STATA  

gen avginc3 = avginc*avginc2;    Create the cubic regressor 

reg testscr avginc avginc2 avginc3, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  3,   416) =  270.18 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5584 

                                                       Root MSE      =  12.707 

 

------------------------------------------------------------------------------ 

             |               Robust 

 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   5.018677   .7073505     7.10   0.000     3.628251    6.409104 

     avginc2 |  -.0958052   .0289537    -3.31   0.001    -.1527191   -.0388913 

     avginc3 |   .0006855   .0003471     1.98   0.049     3.27e-06    .0013677 

       _cons |    600.079   5.102062   117.61   0.000     590.0499     610.108 

------------------------------------------------------------------------------ 
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Testing the null hypothesis of linearity, against the alternative 

that the population regression is quadratic and/or cubic, that is, it 

is a polynomial of degree up to 3: 

 

H0:  pop’n coefficients on Income
2
 and Income

3
 = 0 

H1: at least one of these coefficients is nonzero. 

 
test avginc2 avginc3;  Execute the test command after running the regression 

 

 ( 1)  avginc2 = 0.0 

 ( 2)  avginc3 = 0.0 

 

F(  2,   416) =   37.69 

Prob > F =    0.0000 

 

The hypothesis that the population regression is linear is rejected 

at the 1% significance level against the alternative that it is a 

polynomial of degree up to 3. 
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Summary: polynomial regression 

functions  
Yi = 0 + 1Xi + 2 

2

iX  +…+ r
r

iX  + ui 

 Estimation: by OLS after defining new regressors 

 Coefficients have complicated interpretations 

 To interpret the estimated regression function: 

 plot predicted values as a function of x 

 compute predicted Y/X at different values of x 

 Hypotheses concerning degree r can be tested by t- and F-

tests on the appropriate (blocks of) variable(s). 

 Choice of degree r 

 plot the data; t- and F-tests, check sensitivity of estimated 

effects; judgment. 

 Or use model selection criteria (later) 
 


