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Nonlinear Regression Functions 

(SW Chapter 8)  

 Everything so far has been linear in the X’s 

 But the linear approximation is not always a good one 

 The multiple regression framework can be extended to handle 

regression functions that are nonlinear in one or more X. 

 

Outline 

1. Nonlinear regression functions – general comments 

2. Nonlinear functions of one variable 

3. Nonlinear functions of two variables: interactions 
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The TestScore – STR relation looks 

linear (maybe)… 
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But the TestScore – Income relation 

looks nonlinear...  
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Nonlinear Regression Population Regression 

Functions – General Ideas (SW Section 8.1)  

If a relation between Y and X is nonlinear: 

 

 The effect on Y of a change in X depends on the value of X – 

that is, the marginal effect of X is not constant 

 A linear regression is mis-specified – the functional form is 

wrong 

 The estimator of the effect on Y of X is biased – it needn’t 

even be right on average. 

 The solution to this is to estimate a regression function that is 

nonlinear in X 
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The general nonlinear population 

regression function  

Yi = f(X1i, X2i,…, Xki) + ui, i = 1,…, n 

 

Assumptions 

1. E(ui| X1i,X2i,…,Xki) = 0  (same); implies that f is the 

conditional expectation of Y given the X’s. 

2. (X1i,…,Xki,Yi) are i.i.d. (same). 

3. Big outliers are rare (same idea; the precise mathematical 

condition depends on the specific f). 

4. No perfect multicollinearity (same idea; the precise statement 

depends on the specific f). 
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Nonlinear Functions of a Single 

Independent Variable (SW Section 8.2)  

We’ll look at two complementary approaches: 

 

1.  Polynomials in X 

The population regression function is approximated by a 

quadratic, cubic, or higher-degree polynomial 

 

2.  Logarithmic transformations 

 Y and/or X is transformed by taking its logarithm 

 this gives a “percentages” interpretation that makes sense 

in many applications 
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1.  Polynomials in X  

Approximate the population regression function by a polynomial: 

 

Yi = 0 + 1Xi + 2
2

iX  +…+ r
r

iX  + ui 

 

 This is just the linear multiple regression model – except that 

the regressors are powers of X! 

 Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 

 The coefficients are difficult to interpret, but the regression 

function itself is interpretable 
 



9 

Example:  the TestScore – Income 

relation  
Incomei = average district income in the i

th
 district 

 (thousands of dollars per capita) 

 

Quadratic specification: 

 

TestScorei = 0 + 1Incomei + 2(Incomei)
2
 + ui 

 

Cubic specification: 

 

TestScorei = 0 + 1Incomei + 2(Incomei)
2
  

+ 3(Incomei)
3
 + ui 
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Estimation of the quadratic 

specification in STATA  
generate avginc2 = avginc*avginc;       Create a new regressor  

reg testscr avginc avginc2, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  2,   417) =  428.52 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5562 

                                                       Root MSE      =  12.724 

 

------------------------------------------------------------------------------ 

             |               Robust 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   3.850995   .2680941    14.36   0.000      3.32401    4.377979 

     avginc2 |  -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119 

       _cons |   607.3017   2.901754   209.29   0.000     601.5978    613.0056 

------------------------------------------------------------------------------ 

 

Test the null hypothesis of linearity against the alternative that 

the regression function is a quadratic…. 
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Interpreting the estimated 

regression function:  

(a)  Plot the predicted values 

·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

(2.9)  (0.27)              (0.0048) 
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Interpreting the estimated 

regression function, ctd:  
(b)  Compute “effects” for different values of X 

 

·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

 (2.9)  (0.27)              (0.0048) 

 

Predicted change in TestScore for a change in income from 

$5,000 per capita to $6,000 per capita: 

 

·TestScore = 607.3 + 3.85 6 – 0.0423 6
2
 

     – (607.3 + 3.85 5 – 0.0423 5
2
) 

    = 3.4 
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·TestScore = 607.3 + 3.85Incomei – 0.0423(Incomei)
2
 

 

Predicted “effects” for different values of X: 

 

Change in Income ($1000 per capita) ·TestScore 

from 5 to 6 3.4 

from 25 to 26 1.7 

from 45 to 46 0.0 

 

The “effect” of a change in income is greater at low than high 

income levels (perhaps, a declining marginal benefit of an 

increase in school budgets?) 

Caution!  What is the effect of a change from 65 to 66?   

Don’t extrapolate outside the range of the data! 
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Estimation of a cubic specification 

in STATA  

gen avginc3 = avginc*avginc2;    Create the cubic regressor 

reg testscr avginc avginc2 avginc3, r; 

 

Regression with robust standard errors                 Number of obs =     420 

                                                       F(  3,   416) =  270.18 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.5584 

                                                       Root MSE      =  12.707 

 

------------------------------------------------------------------------------ 

             |               Robust 

 

     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      avginc |   5.018677   .7073505     7.10   0.000     3.628251    6.409104 

     avginc2 |  -.0958052   .0289537    -3.31   0.001    -.1527191   -.0388913 

     avginc3 |   .0006855   .0003471     1.98   0.049     3.27e-06    .0013677 

       _cons |    600.079   5.102062   117.61   0.000     590.0499     610.108 

------------------------------------------------------------------------------ 

 



15 

Testing the null hypothesis of linearity, against the alternative 

that the population regression is quadratic and/or cubic, that is, it 

is a polynomial of degree up to 3: 

 

H0:  pop’n coefficients on Income
2
 and Income

3
 = 0 

H1: at least one of these coefficients is nonzero. 

 
test avginc2 avginc3;  Execute the test command after running the regression 

 

 ( 1)  avginc2 = 0.0 

 ( 2)  avginc3 = 0.0 

 

F(  2,   416) =   37.69 

Prob > F =    0.0000 

 

The hypothesis that the population regression is linear is rejected 

at the 1% significance level against the alternative that it is a 

polynomial of degree up to 3. 
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Summary: polynomial regression 

functions  
Yi = 0 + 1Xi + 2 

2

iX  +…+ r
r

iX  + ui 

 Estimation: by OLS after defining new regressors 

 Coefficients have complicated interpretations 

 To interpret the estimated regression function: 

 plot predicted values as a function of x 

 compute predicted Y/X at different values of x 

 Hypotheses concerning degree r can be tested by t- and F-

tests on the appropriate (blocks of) variable(s). 

 Choice of degree r 

 plot the data; t- and F-tests, check sensitivity of estimated 

effects; judgment. 

 Or use model selection criteria (later) 
 


