6.3 — OLS In multiple regression

The population model:
Y; = d{) -+ _ﬁl){l?ﬁ —+ d_} JYQ?'_ —+ ...+ dgm JX;{_,@_ + €; (Glj

How to estimate the fs?

e Still want to minimize the sum of squared residuals (the sum of
“vertical distances”):
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e Take (k + 1) derivatives, set them equal to zero, solve

e The new formula is too difficult to show (unless we use
matrices, which we won’t)

The resulting estimated model:

-

Vi = by + b1 X1; + by Xoi + -+ bp X (6.2)

can’t be interpreted as a line! (It’s a k-dimensional hyperplane).

We can still try to visualize things if we have only 2 X variables,
however:









6.3.2 Interpretation

Let’s look at a population model with two X variables:
Yi = Bo+ B1 X1 + BaXoi + €& (6.3)

Y is still the dependent variable

X1 and X are the independent variables (the regressors)

7 still denotes an observation number

Bp is the population intercept

[ is the effect of X1 on Y, holding all else constant (X5)

[ is the effect of X5 on Y, holding all else constant (X)

e is the regression error term (containing all the omitted factors that

effect V')



6.4: A2 — No perfect multicollinearity

Now that we have multiple X variables in our model, we need to
make an additional assumption in order for OLS to work:

There is no perfect multicollinearity. This means:

e No two variables (or combinations of variables) are exactly
linearly related

e No two variables are perfectly correlated



For example, exact linear relationships between Xs are:

o« X1 =X
e X1 =100X5

e X1 =1+ Xo—3X5

If you know X1, you know X; In first two examples).
Including both variables would be redundant.
OLS can’t handle it. (Like dividing by zero).

Some common examples of where the assumption of “no perfect multi-
collinearity” is violated in practice are when the same variable is measure in
different units (such as square feet and square metres, or dollars and cents),
and in the dummy variable trap.



The Living. Area variable measures the size of
the house in square feet. Suppose that there was another variable in the
data set that measured house size in square metres (1 square foot = 0.0929
square metre). We can create this variable in R using:

House .Size <- 0.0929 x Living.Area

and now let’s include it in our OLS estimation:

summary (1lm(Price ~ Fireplaces + Living.Area + House.Size))

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])
(Intercept) 14.730146 5.007563 2.942 0.00331 x*x
Fireplaces 8.962440 3.389656 2.644 0.00827 x*x
Living.Area 0.109313 0.003041 35.951 < 2e-16 **x
House .Size NA NA NA NA

Signif. codes: 0 ‘“*x*x’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 ‘.” 0.1 ¢ 1

Residual standard error: 68980 on 1725 degrees of freedom
Multiple R-squared: 0.5095, Adjusted R-squared: 0.5089
F-statistic: 895.9 on 2 and 1725 DF, p-value: < 2.2e-16



6.4.1 The dummy variable trap

The dummy variable trap occurs when one too many dummy variables are
included in the equation. For example, suppose that we have a dummy
variable female that equals 1 if the worker is female. Suppose that we also
have a variable male that equals 1 if the worker is male. There is an exact
linear combination between the two variables:

f emale = 1 — male

OLS won’t work for:

wage = By + B1 X male + B3 X female + €



Much easier to fall into the trap for “categorical
variables”

Alberta = 1 it Location = AB: (0 otherwise
British.Columbia = 1 it Location = B(C": 0 otherwise
Manitoba = 1 if Location = M B: 0 otherwise

Yukon =1 it Location = Y'T'; 0 otherwise
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e We would create 13 dummy variables using “location”, but
only include 12 of them in our equation

e The group that 1s left out becomes the “base group”
e We could also drop the intercept (but this 1sn’t usually done)

Final note:
Non-linear transformations are ok! We will do this in chapter 8.
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6.4.2 Imperfect multicollinearity

Imperfect multicollinearity is when two (or more) variables are
almost perfectly related (highly correlated).

Example

Pretend we know the pop. model:
},’ — 21‘{1 + 24{‘{2 + €

and that the correlation between X; and X, is 0.99.
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summary (lm (Y ~ X1))

Coefficients:
Estimate Std. Error t wvalue Pr(>|t])

(Intercept) -4.4165 3.8954 -1.134 0.263
X1 4.,0762 0.4698 8.676 2.13e-11 *x*x

The estimated standard error is small. so that the f-statistic is large, and
we are sure that Xy is statistically significant. However, the estimated /31 is
twice as big as it should be. This is because of omitted variable bias.
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summary (Im(Y ~ X1 + X2))

Coefficients:
Estimate Std.

(Intercept) -4.676
X1 1.958
X2 2.128

Error t value Pr(>|t|)

3.956 -1.182 0.243
4.075 0.481 0.633
4.066 0.523 0.603

Now, the estimated s are closer to their true value of 2, but both appear
to be statistically insignificant! (Note the large standard errors and small

t-statistics.)
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The problem:

e Because X; and X; are correlated, difficult to attribute changes
in X; to changes in Y (same for X3)

e X; and X; are almost always changing together in a similar way
e ceteris paribus assumption is not feasible
e 1 1s the effect of X1 on Y, holding Xz constant
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How imperfect multicollinearity affects estimation

e |large standard errors, wide confidence intervals

¢ adding and dropping variables results in large swings of the
estimated values

e overall — makes us unsure about our results
e problem is difficult to address
e can’t drop variables (OVB)

e if you don’t need to interpret the affected variables, it’s not a
problem
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