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8 – Nonlinear effects 

• Lots of effects in economics are nonlinear 

• Examples 

• Deal with these in two (sort of three) ways: 

o Polynomials 

o Logarithms 

o Interaction terms (sort of) 
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The linear model 

Our models so far are linear. 

• Change in Y due to change in X? 

• See plots for:  

o age vs. ahe 

o carats vs. diamond price 

 

If the true relationship is nonlinear, then the linear model is 

misspecified. (A sort of OVB). OLS is biased and inconsistent. 
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Average hourly earnings (ahe) and age. CPS data – over 60,000 

observations. Linear model vs. polynomial model. 
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Nonlinear effects 

If the relationship between Y and X is nonlinear: 

• The effect of X on Y depends on the value of X 

• The marginal effect of X is not constant 

• Need to specify a population model that allows the marginal 

effect to change depending on the value of X 
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Polynomial regression model 

The idea is that non-linear functions can be approximated using 

polynomials. For example, a polynomial function is: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒𝑥4 

This is a fourth-order polynomial. A second order polynomial is 

the familiar quadratic equation: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

 

The validity of the approximation is due to the Taylor series 

approximation. See: 

http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.

gif  

We won’t discuss the Taylor series here. 

http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.gif
http://en.wikipedia.org/wiki/Taylor_series#/media/File:Exp_series.gif
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The (polynomial) population model: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2 + ⋯ + 𝛽𝑟𝑋1

𝑟 + 𝜖 

 

• This is just the linear model, but regressors are powers of 𝑋1 

• Other variables can be added as usual 

• Estimation, hypothesis testing – same as usual 

• NOT a violation of perfect multicollinearity 

• Usually just a squared term is enough (quadratic model) 

• 𝛽s are difficult to interpret 

 

Exercise: For the model: 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2 + 𝜖, determine 

the effect of 𝑋1 on 𝑌. 
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Determining r 

The degree of the polynomial can be determined by starting high 

and use t and F tests to get it smaller. 

 

For example, in the model: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2 + 𝜖 

The null hypothesis H0: 𝛽2 = 0, the null hypothesis says that 𝑋1 

has a linear effect, while the alternative hypothesis says it has a 

nonlinear effect. 
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Interpreting the estimated βs 

In the model: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋1
2 + 𝜖 

𝛽1 and 𝛽2 don’t make much sense by themselves – they kind of go 

together. 

To interpret the estimated regression: 

• Plot predicted values 

• Consider specific scenarios – take differences 
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Exercise. Use the diamond data. 

a) Regress price on carat. Interpret your results. 

b) Estimate a quadratic model. 

c) Test the hypothesis that carat has a linear effect on price. 

d) Interpret your results from the quadratic model. 

e) Should we have used a cubic model? 
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Answers 

a) Load the data: 

install.packages("Ecdat") 

library(Ecdat) 

data(Diamond) 

attach(Diamond) 

 

Estimate: 

summary(lm(price ~ carat)) 
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -2298.4      158.5  -14.50   <2e-16 *** 

carat        11598.9      230.1   50.41   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1118 on 306 degrees of freedom 

Multiple R-squared:  0.8925, Adjusted R-squared:  0.8922  

F-statistic:  2541 on 1 and 306 DF,  p-value: < 2.2e-16 

 

Interpretation: when carats increases by 1, price increases by 

$11599. Or, for each 0.1 increase in carat, price increases by 

$1160. 
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Plot it: 

plot(carat, price, main="Price of diamonds, by 
carats") 

abline(lm(price ~ carat), col = "red") 

 

Doesn’t look very good! The size of the diamond doesn’t matter – 

same marginal effect everywhere.  
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b) The quadratic model is: 

𝑝𝑟𝑖𝑐𝑒 =  𝛽0 + 𝛽1𝑐𝑎𝑟𝑎𝑡 +  𝛽2𝑐𝑎𝑟𝑎𝑡2 + 𝜖 

 

We get the 𝑐𝑎𝑟𝑎𝑡2 variable by creating a new variable in R: 

 

carat2 <- carat^2 

 

The ^ is the power operator (shift-6). 

 

Estimate the quadratic model: 

 

summary(lm(price ~ carat + carat2)) 
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -42.51     316.37  -0.134   0.8932     

carat        2786.10    1119.61   2.488   0.0134 *   

carat2       6961.71     868.83   8.013  2.4e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1017 on 305 degrees of freedom 

Multiple R-squared:  0.9112, Adjusted R-squared:  0.9106  

F-statistic:  1565 on 2 and 305 DF,  p-value: < 2.2e-16 

c) Reject! Look at the *** on carat2. 

 

d) Interpretation is tricky. Sign of the squared term? I can draw it 

(you don’t have to). Blue squares are some OLS predicted values. 
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The key is to consider specific scenarios (predicted values). For 

example, we could consider the effect of a 0.1 increase in carats, 

for different carat sizes. 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=0.2 = −42.51 + 2786.10(0.2) + 6961.71(0.22)

= 793.18 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=0.3 = −42.51 + 2786.10(0.3) + 6961.71(0.32)

= 1419.88 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=0.3 − 𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=0.2 = 626.70  

 

A 0.1 increase in carat increases price by $627, when the diamond 

is small (0.2 carats). This effect was $1160 in the linear model. 
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We should consider a change under a different scenario. 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=1 = −42.51 + 2786.10(1) + 6961.71(12) = 9705 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=1.1 = −42.51 + 2786.10(1.1) + 6961.71(1.12)

= 11446 

𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=1 − 𝑝𝑟𝑖𝑐̂𝑒|𝑐𝑎𝑟𝑎𝑡=1.1 = 1741 

 

A 0.1 increase in carat increases price by $1741, when the 

diamond is large (1 carat). This effect was $1160 in the linear 

model. 

 

(In the nonlinear model, the marginal effect depends on the size of 

the diamond). 

  



19 

e) Estimate a cubic model: 

𝑝𝑟𝑖𝑐𝑒 =  𝛽0 + 𝛽1𝑐𝑎𝑟𝑎𝑡 +  𝛽2𝑐𝑎𝑟𝑎𝑡2 + 𝛽3𝑐𝑎𝑟𝑎𝑡3 + 𝜖 

 

We’ll need a new variable: 

carat3 <- carat^3 

 

Run the regression: 

summary(lm(price ~ carat + carat2 + carat3)) 
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)    786.3      765.4   1.027   0.3051   

carat        -2564.2     4636.9  -0.553   0.5807   

carat2       16638.9     8185.3   2.033   0.0429 * 

carat3       -5162.5     4341.9  -1.189   0.2354   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1017 on 304 degrees of freedom 

Multiple R-squared:  0.9116, Adjusted R-squared:  0.9107  

F-statistic:  1045 on 3 and 304 DF,  p-value: < 2.2e-16 

 

b3 is insignificant. The quadratic specification is good enough. 


