8 - Logarithmic functions of Y and/or X

Another way to approximate the nonlinear relationship between Y and X is by using logarithms.

- In some rare cases, taking logarithms is not an approximation it is an exact way to linearize a relationship. Examples in macro/time-series
- In other cases, we can exploit a property of logs - small changes in $\log (x)$ are approximately percentage changes.
- How do percentage changes help us? It is a type of nonlinear effect. Example - wages and gender. (Regressions almost always use \log (wage) on the LHS instead of just wage).

Log-approximation

Percentage change:

$$
\frac{\Delta X}{X} \times 100=\frac{x_{2}-x_{1}}{x_{1}} \times 100
$$

x_{1} is the initial value of X, x_{2} is the final value of X.

The approximation:

$$
\begin{aligned}
& {[\ln (X+\Delta X)-\ln X] \times 100 \cong \frac{\Delta X}{X} \times 100} \\
& \left(\ln x_{2}-\ln x_{1}\right) \times 100 \cong \frac{x_{2}-x_{1}}{x_{1}} \times 100
\end{aligned}
$$

The approximation is better the smaller Δx.

Change in x	Percentage change: $\frac{x_{2}-x_{1}}{x_{1}} \times 100$	Approximated percentage change $\left(\ln x_{2}-\ln x_{1}\right) \times 100$
$x_{1}=1, x_{2}=2$	100%	69.32%
$x_{1}=1, x_{2}=1.1$	10%	9.53%
$x_{1}=1, x_{2}=1.01$	1%	0.995%
$x_{1}=5, x_{2}=6$	20%	18.23%
$x_{1}=11, x_{2}=12$	9.09%	8.70%
$x_{1}=11, x_{2}=11.1$	0.91%	0.91%

So how is this helpful?
Three log regression specifications

Case	Population regression function
I. linear-log	$Y=\beta_{0}+\beta_{1} \ln (X)+\epsilon$
II. \log-linear	$\ln (Y)=\beta_{0}+\beta_{1} X+\epsilon$
III. $\log -\log$	$\ln (Y)=\beta_{0}+\beta_{1} \ln (X)+\epsilon$

- The interpretation of the slope coefficient differs in each case.
- The interpretation can be found by figuring out the change in Y for a given change in X.

Interpretation of coefficients

lin-log: $Y=\beta_{0}+\beta_{1} \ln (X)+\epsilon$

- A 1% change in X is associated with a $0.01 \beta_{1}$ change in Y
log-lin: $\ln (Y)=\beta_{0}+\beta_{1} X+\epsilon$
- A change in X of 1 is associated with a $100 \beta_{1} \%$ change in Y
log-log: $\ln (Y)=\beta_{0}+\beta_{1} \ln (X)+\epsilon$
- A 1% change in X is associated with a $\beta_{1} \%$ change in Y
- β_{1} can be interpreted as an elasticity

A note on R^{2}
R^{2} measures the proportion of variation in the dependent (Y) variable that can be explained using the X variables.

- When we take $\log (Y)$, the variance of the dependent variable changes (it tends to get smaller)
- We cannot use R^{2} to compare models with different dependent variables! That is, we should not use R^{2} to decide between two models, where the LHS variable is wage in one, and \log (wage) in the other.

Example: CPS wages

insta11. packages("AER")
library(AER)
data("CPS1985")
attach(CPS1985)

Estimate log-lin model:
summary (lm(log(wage) ~ education + gender + age + experience))

Coefficients:

```
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.15357 0.69387 1.663 0.097 .
education 0.17746 0.11371 1.561 0.119
genderfema1e -0.25736 0.03948 -6.519 1.66e-10 ***
age -0.07961 0.11365 -0.700 0.484
experience 0.09234 0.11375 0.812 0.417
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1
```

Interpretation: 1 more year of education $\rightarrow 17.7 \%$ increase in wage, etc.

Dummy variables are a bit tricky: women earn 25.7% less than men (but it's actually $100 \times(\exp (-0.257)-1)=-22.7 \%)$

