8 – Logarithmic functions of Y and/or X

Another way to approximate the nonlinear relationship between *Y* and *X* is by using logarithms.

- In some rare cases, taking logarithms is **not** an approximation it is an exact way to linearize a relationship. Examples in macro/time-series
- In other cases, we can exploit a property of logs small changes in log(*x*) are *approximately* percentage changes.
- How do percentage changes help us? It is a type of nonlinear effect. Example wages and gender. (Regressions almost always use log(*wage*) on the LHS instead of just *wage*).

Log-approximation

Percentage change:

$$\frac{\Delta X}{X} \times 100 = \frac{x_2 - x_1}{x_1} \times 100$$

 x_1 is the initial value of X, x_2 is the final value of X.

The approximation:

$$[\ln(X + \Delta X) - \ln X] \times 100 \cong \frac{\Delta X}{X} \times 100$$
$$(\ln x_2 - \ln x_1) \times 100 \cong \frac{x_2 - x_1}{x_1} \times 100$$

The approximation is better the smaller Δx .

Change in <i>x</i>	Percentage change:	Approximated	
	$\frac{x_2 - x_1}{2} \times 100$	percentage change	
	<i>x</i> ₁	$(\ln x_2 - \ln x_1) \times 100$	
$x_1 = 1$, $x_2 = 2$	100%	69.32%	
$x_1 = 1$, $x_2 = 1.1$	10%	9.53%	
$x_1 = 1$, $x_2 = 1.01$	1%	0.995%	
$x_1 = 5$, $x_2 = 6$	20%	18.23%	
$x_1 = 11$, $x_2 = 12$	9.09%	8.70%	
$x_1 = 11$, $x_2 = 11.1$	0.91%	0.91%	

So how is this helpful?

Three log regression specifications

Case	Population regression function
I. linear-log	$Y = \beta_0 + \beta_1 \ln(X) + \epsilon$
II. log-linear	$\ln(Y) = \beta_0 + \beta_1 X + \epsilon$
III. log-log	$\ln(Y) = \beta_0 + \beta_1 \ln(X) + \epsilon$

- The interpretation of the slope coefficient differs in each case.
- The interpretation can be found by figuring out the change in *Y* for a given change in *X*.

Interpretation of coefficients

lin-log: $Y = \beta_0 + \beta_1 \ln(X) + \epsilon$

• A 1% change in X is associated with a $0.01\beta_1$ change in Y

log-lin: $\ln(Y) = \beta_0 + \beta_1 X + \epsilon$

• A change in X of 1 is associated with a $100\beta_1$ % change in Y

log-log: $\ln(Y) = \beta_0 + \beta_1 \ln(X) + \epsilon$

- A 1% change in X is associated with a β_1 % change in Y
- β_1 can be interpreted as an *elasticity*

<u>A note on \mathbb{R}^2 </u>

 \mathbb{R}^2 measures the proportion of variation in the dependent (*Y*) variable that can be explained using the *X* variables.

- When we take log(*Y*), the variance of the dependent variable changes (it tends to get smaller)
- We cannot use R² to compare models with different dependent variables! That is, we should not use R² to decide between two models, where the LHS variable is *wage* in one, and log(*wage*) in the other.

```
Example: CPS wages
install.packages("AER")
library(AER)
data("CPS1985")
attach(CPS1985)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.15357	0.69387	1.663	0.097	
education	0.17746	0.11371	1.561	0.119	
genderfemale	-0.25736	0.03948	-6.519	1.66e-10	***
age	-0.07961	0.11365	-0.700	0.484	
experience	0.09234	0.11375	0.812	0.417	
Signif. codes	5: 0 '***	*' 0.001 '*'	°' 0.01	'*' 0.05 '	.' 0.1 ' ' 1

Interpretation: 1 more year of *education* \rightarrow 17.7% increase in *wage*, etc.

Dummy variables are a bit tricky: women earn 25.7% less than men (but it's actually $100 \times (\exp(-0.257) - 1) = -22.7\%)$