8.4 — Interaction terms

e A type of non-linear effect

o Allows for different effects for different groups (when using a
dummy)



A hypothetical data set — demand for marijuana

Suppose that 500 marijuana users are surveyed in different locations,
and the variables in the data are:

e () - the quantity of marijuana consumed, in grams, per month
e P - the average price per gram in the individual’s location

e adult =1 ifthe individual is an adult, = 0 if the individual is a teenager



Figure 8.1: Plot of the hypothetical demand for marijuana data.
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e Notice anything?
e Ignore the adult dummy variable, estimate a regression

summary (1m(Q ~ P))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 44.2152 1.0776 41.03 <2e-16 *x*xx*
P -2.1634 0.1041 -20.78 <2e-16 *xx

Increase in price of $1 leads to decrease in consumption of 2.16
grams/month.

Add the line:



Figure 8.2: Marijuana data, with estimated regression line from @) = By +
31 P + € added to the plot.

40

30

20

10




e \We’re getting an “average” regression line for the two groups

e Ideally, we would like a separate regression slope for each

e \Why might the slope (marginal effect) be different between
groups

Plot the data by group (teenagers and adults):



Figure 8.3: Marijuana data plotted by age group.
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Let’s add the dummy variable to the regression:

summary (Im(Q ~ P + adult))

Coefficients:

Estimate Std.

(Intercept) 46.21319
P -2.12242
adult -4.81124

Interpretation?

e Adults consume 4.81 g less

e Slope?

1.
0.
0.

Error
02971
09712
54975

t value Pr(>|t]|)
44 .880 <2e-16 *x*xx
-21.854 <2e-16 *x*xx
-8.752 <2e-16 *xx

Does the dummy variable do the trick? See the regression lines

plotted:



Figure 8.4: With the addition of the dummy variable, each group has a
different intercept, but the same slope.
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Two separate regression lines, but only the intercepts differ (slope
the same). In order to get what we want, we need an interaction
term. In this case, it will be a dummy-continuous interaction.

Ideally, we want to allow the effect of P on Q to be different for
adults and teenagers. How to do this?

Estimate the population model:

Q = By + 51 P + Baadult + [3(adult x P) 4+ € (8.2)

where adult x P is the interaction term, and is a new variable that is created
by multiplying the other two variables together. To see how model 8.2 allows

for two separate lines, consider what the population model is for teenagers
(adult = 0), and for adults (adult = 1).
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Population model for teenagers

Let’s substitute in the value adult = 0 into equation 8.2 and get the popu-
lation model for teenagers:

Q=050+ B1P+ 32(0) + 83(0 x P) + ¢

= Bo+ 1P +¢€ (8:3)

From equation 8.3, we can see that the intercept is 3y and the slope is 3.
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Population model for adults

Substituting in the value adult = 1 into equation 8.2, we get the population
model for adults:

Q= Po+ B1P+ B2(1) + F3(1 x P) +¢

= (Bo+ B2) + (81 + B3)P + e (8.4)

For adults, the intercept is Gy + (32 and the slope is 81 + (3. The marginal
effect of price on consumption differs by (33 between the two groups.
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Estimation with an interaction term

To include a dummy-continuous interaction term in our regression, we sim-
ply create a new variable by multiplying the dummy variable (adult) and
the continuous variable P together:

adult P <- adultx*P

and include the new variable in the regression:

summary (1m(Q ~ P + adult + adult P))
y _

Coefficients:

Estimate Std.

(Intercept) 63.48944

P -3.88168
adult -39.25222
adult_P 3.45993

o = O O

Error

.85166
.08339
.21030
.11695

t value Pr(>|t])

74.55
-46.55
-32.43

29.58

<2e-16
<2e-16
<2e-16
<2e-16

* % %
* % %
* % %
* % %

The estimated value of 3.46 (on the adult_P dummy-continuous inter-
action term) means that the decrease in consumption due to an increase in
price of $1 is 3.46 grams/month less for adults than it is for teenagers. That
is, the effect of price on quantity is -3.88 for teenagers, and (-3.88 + 3.46 =

-0.42) for adults. The demand curve is much steeper for teenagers.
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Figure 8.5:
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Dummy-dummy interaction: differences-in-differences

e CPS data again
e bach = 1 if individual has a university degree, = 0 otherwise
e start with basic model:

summary (lm(log(wage) ~ female + bach))

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.07175 0.03108 66.657 < 2e-16 *xx*xx
female -0.22886 0.04240 -5.397 1.02e-07 *x*xx%
bach 0.39177 0.04976 7.873 1.97e-14 *xxx

Interpretation of results?

e There is a different wage for men and women
e There is a different wage for bach and no bach
e There is no different effect of bach for women vs. men
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We might want to allow for the effect of a degree on wage to be
different for men and women (a difference-in-difference).
We could estimate the model:

log(wage) = By + B1 female 4+ Pobach + [3( female x bach) + €
where (33 is the additional percentage increase in wages for women with

an education, versus men with an education. In R, we create the dummy-
dummy interaction term by:

fem bach <- femalexbach

and include it in our regression:

summary (lm(log(wage) ~ female + bach + fem_bach))
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Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 2.08291 0.03292 63.280 < 2e-16 *x*xx*
female -0.25309 0.04849 -5.219 2.58e-07 *xx
bach 0.34500 0.06736 5.122 4.25e-07 *x*x
fem_bach 0.10292 0.09994 1.030 0.304

Interpretation?

e b; — Women without a degree make 25% less than men
without a degree

e b, — Men with a degree make 35% more than men without a
degree

e b, + bs — Women with a degree make 45% more than women
without a degree

e b3 — The “difference-in-difference”. The effect of a degree on
wage 1s 10% more for women than for men
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8.4.4 Hypothesis tests involving dummy interactions

An important use of dummy interaction terms is to test whether there is a
different effect between two groups. In the marijuana example, the interac-
tion term measures the difference in the slope of the demand curve between
the two groups. To test the hypothesis that the sensitivity of marijuana
consumption to changes in price is the same for teenagers as it is for adults,
we could test the hypothesis:

Hy:pB3=0
Hyq:B3#0

in the model:

Q = By + B1 P + Bradult + B3(adult x P)+ ¢
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Similarly, testing 83 = 0 in the model:

log(wage) = Bo + B1 female + Babach + F3( female x bach) + €

is a test of whether there is a different effect of education for women than
for men. From the regression output in the previous section, we see that the
p-value for the estimated coefficient on fem_bach is 0.304. We fail to reject
the null that there is no difference in the effect of education between men
and women.
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Extra stuff

e Continuous-continuous Interactions
e Add other variables
e Polynomial model — multiple interactions — need F-test
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