
1

Introduction to programming in R

Data Structures

 A format for storing data

 Different types and dimensions

 Most common data structure is the vector

 We will also use matrices and data frames

o a data frame can be a matrix, but where the variables

(columns) have names

2

Data types (4 common types)

 numeric, or “double” – continuous, most variables in

economics

 logical – TRUE/FALSE or 0/1 (e.g. dummy variables)

 integers – e.g. count data

 character/string – usually only arise before data is “cleaned”

Unlike a matrix, each variable (column) in a data frame can be of a

different type.

3

Vectors can be created with the c() function (combine):

y <- c(2, 3.5, 8, 4)

 contents of function (each argument separated by “,”)

 function

 assignment

name of the object

We could use = instead of <- for assignment, but this is bad form.

Create this vector in R.

4

Functions

 There are many functions programmed in R

 They work similarly to how they work in mathematics

 In a typical function, you provide it with inputs (or arguments),

R calculates something, and then provides you with output

 You can (and will) program your own functions

Let’s program a function that calculates the mean of a variable,

using other “base” functions.

5

Make sure you have first created a variable in R (in order to test

our functions):

y <- c(2, 3.5, 8, 4)

Calculate the mean using the base function mean():

name of function

 argument/input

> mean(y)

[1] 4.375

output

6

To create our own function to calculate the mean, we need other

base functions in R.

 What three functions do we need?

7

 Summation: sum()

 Division: “/”()

 length()

Note:

“/”(4, 2)

Is equivalent to:

4 / 2

(R makes it easier to “call” some functions, in an intuitive way)

8

Try the following:

sum(y) / length(y)

Now, let’s make our own function:

name tell R you’re making a function

 argument(s) of the function

mymean <- function(x) {

 sum(x) / length(x)

}

 contents of function in curly braces

9

Test the function to make sure it does the same thing as R’s

mean():

> mymean(y)

[1] 4.375

Use it for any arbitrary vector:

mymean(c(1, 2, 3, 4))

10

Assignment – worth 2% of project - due Tues. Sept. 18th

Write a function that calculates the sample variance of a variable, without using the var() function in R.

Hints:

 to “square” every element in a vector use “^ 2”

 computers do mathematical operations in a particular order. To control the order, use parentheses. For

example:

3 + 2 ^ 2

gives a different result from

(3 + 2) ^ 2

Turn in a single printed out sheet containing your R code, which includes your function, and how you tested it to

get the same result as var().

Do not use y <- c(2, 3.5, 8, 4) to test your code. Use anything else.

11

For example, the above would be submitted in assignment form as:

y <- c(2, 3.5, 8, 4)

mean(y)

mymean <- function(x) {

 sum(x) / length(x)

}

mymean(y)

With a copy of the R output obtained from running the above code:

> y <- c(2, 3.5, 8, 4)

> mean(y)

[1] 4.375

>

> mymean <- function(x) {

+ sum(x) / length(x)

+ }

> mymean(y)

[1] 4.375

