Econ 4042 - Assignment 2

Ryan T. Godwin

Due: Oct. 4th. Worth 3% of your assignment grade. Question 8 will not be marked.

1. Given the population model:

$$\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

derive the OLS estimator for β . Which assumptions do you need?

Answer.

The OLS estimator is defined as the vector of estimates **b** which minimizes the sum of squared residuals e'e, where y = Xb + e.

The optimization problem can be stated as:

$$\min_{\boldsymbol{b}} \boldsymbol{e}' \boldsymbol{e}$$

Substituting $\boldsymbol{y} - X\boldsymbol{b}$ into \boldsymbol{e} , we get:

e'e = (y - Xb)

2. Suppose the population model is:

$$y_i = \beta_1 + \beta_2 x_i + \epsilon_i$$

The \boldsymbol{y} and \boldsymbol{x} variables are:

$$oldsymbol{y} = egin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}; \quad oldsymbol{x} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Calculate the OLS estimators for β_1 and β_2 .

3. Suppose again that we have the population model:

$$\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

but where the X matrix contains only a column of 1s. In this case, prove that $b = \bar{y}$.

- 4. Prove that the OLS residuals sum to zero.
- 5. Prove that the fitted regression "line" passes through the sample mean of the data.
- 6. Prove that the sample mean of the OLS predicted values (\hat{y}) equals the sample mean of the actual y values.

- 7. Prove that $\boldsymbol{y}' M^0 \boldsymbol{y} = \hat{\boldsymbol{y}}' M^0 \hat{\boldsymbol{y}} + \boldsymbol{e}' \boldsymbol{e}.$
- 8. Suppose that we have our usual linear model:

$$y = X\beta + \epsilon$$
,

but that we partition the X matrix and β vector and write the model as:

$$\boldsymbol{y} = X_1 \boldsymbol{\beta}_1 + X_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon}.$$

All of the usual assumptions are satisfied, except that $E[\epsilon] = X_1 \gamma$. That is, the mean vector for the disturbances is a linear combination of a subset of the regressors. Let b_1 and b_2 be the OLS estimators for β_1 and β_2 . Obtain the expressions for $E[\beta_1]$ and $E[\beta_1]$, and interpret your results.