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The Monte Carlo method provides a laboratory in which the properties of estimators and tests 

can be explored. Although the Monte Carlo method is older than the computer, it is associated 

with repetitive calculations and random number generation, which is greatly assisted by 

computers. 

 

The Monte Carlo method was used as early as 1933 by Enrico Fermi, and likely contributed to 

the work that won him the Nobel Prize in 1938 (Anderson, 1986, p. 99). The term “Monte Carlo” 

was coined in 1947 by Stanislaw Ulam, Nicolas Metropolis, and John von Neumann, and refers 

to Stanislaw Ulam’s gambling uncle (Metropolis, 1987). The spirit of the method is well 

captured in the sentiments of Stanislaw Ulam, as he recalls his first thoughts and attempts at 

practising the method. He was trying to determine the chances that a hand of solitaire would 

come out successfully. He wondered if the most practical method would be to deal one-hundred 

hands, and simply observe the outcome (Eckhardt, 1987).  

 

The use of random generation and repetitive calculation are the two central tenets to Monte Carlo 

experimentation, a method which has flourished since the first electronic computer was built in 

1945, and a method which has had a profound impact on mathematics and statistics.  

 

“At long last, mathematics achieved a certain parity - the twofold aspect of experiment and 

theory - that all other sciences enjoy” (Metropolis, 1987, p.130). 

 

A Simple Monte Carlo Experiment 

 

We have seen the derivation of some of the properties of the OLS estimator 𝒃 for 𝜷, in the 

simple linear regression model. Namely, we have seen that OLS is unbiased and efficient. What 

if we could observe these properties? One of the uses of the Monte Carlo method is to guess at 

the properties of statistics; properties which may be difficult to derive theoretically. 
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Let’s consider the unbiasedness property of OLS, which says that the mean of the sampling 

distribution of 𝒃 is 𝜷. If we could mimic the sampling distribution, we should be able to observe 

this property. Recall how we interpreted the sampling distribution: 

 

1. Repeatedly draw all possible samples of size n. 

2. Calculate values of 𝒃 each time. 

3. Construct a relative frequency distribution for 𝒃. 

 

If we replace “all possible” in Step #1 with “10,000” or “100,000”, then the sampling 

distribution may easily be synthesized using a computer. 

 

Our Monte Carlo experiment will begin by pretending that the true unobservable population 

model is known. Then, when we calculate the OLS estimates, we pretend that the population 

model is unknown. This way, we can compare 𝒃 to 𝜷. Let’s begin with an overview of the 

experiment before writing computer code: 

 

1. Specify the (unobservable) population model: 𝒚 = 𝑋𝜷 + 𝜺. This involves choosing 

values for 𝜷, choosing the distribution for 𝜺, and creating some arbitrary 𝑋 data (which 

will be fixed in repeated samples, in accordance with assumption A.5).  

2. “Draw” a sample of 𝒚 from the population model. This involves using a random number 

generator to create the 𝜺 values. 

3. Calculate 𝒃. 

4. Repeat the above steps many (10,000) times, storing each 𝒃. 

5. Take the average of all 10,000 𝒃. If 𝒃 is unbiased, this average should be close to 𝜷. 
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Computational Components of the MC Experiment 

 

There are three major components of this (and many other) Monte Carlo experiment: 

1. Random number generation 

2. Repetition 

3. Estimation 

 

1. Random Number Generation (RNG) 

To mimic random sampling from the population, we must be able to generate random numbers. 

The computer can’t generate truly random numbers, but instead generates pseudo-random or 

quasi-random numbers: that is, a computer generated random number must begin with a seed. To 

generate RNGs in R, refer to the probability distribution which you wish to use. For example, if 

you google “R normal distribution”, you would soon find the command: 

 

rnorm(n, mean = 0, sd = 1) 

 

To make your results reproducible, you can use (for example): 

 

set.seed(1234) 

 

2. Repetition 

Although not the most efficient way of coding, a conceptually intuitive way of effecting 

repletion is through a for loop. For example: 

 

test <- rep(0, 100) 

for(i in 1:100) { 

  test[i] <- i 

} 

test 

 

3. Estimation 

In this context estimation is simple and can be accomplished through the lm command. 
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Jarque-Bera Test for Normality 

For assignment 1 you may wish to make use of the Jarque-Bera test for Normality. You will have 

to install the package tseries. 

library(tseries) 

 

x <- rnorm(100)  # null 

jarque.bera.test(x) 

 

x <- runif(100)  # alternative 

jarque.bera.test(x) 
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