
1. The OLS Estimator 

OLS stands for “Ordinary Least Squares”. There are 6 assumptions ordinarily made, and the 

method of “fitting” a line through data is by least-squares. OLS is a common estimation 

methodology in Economics. While OLS is not appropriate for many contemporary economics 

problems, it is often the starting point for richer econometric models. OLS is also the 

pedagogical starting point for most econometric theory courses. 

1.1 Population model and notation 

Population “model” –   

    

𝒚 = 𝑓(𝑥1, 𝑥2, … . , 𝑥𝑘 ;  𝜽) +  𝜺 

 

 

Dependent variable 

(“regressand”) 

Explanatory variables 

(“regressors”) 

Parameter vector Disturbance term 

(random “error”) 

 

Note: 

 The function, “f”, may be linear or non-linear in the variables. 

 The function, “f”, may be linear or non-linear in the parameters. 

 The function, “f”, may be non-parametric, but we won’t consider this. 

 We’ll focus on models that are parametric, and usually linear in the parameters. 

Questions: 

 Why is the error term needed? 

 What is random, and what is deterministic? 

What is observable, and what is unobservable?       

          

 

  



Examples: 

 

1) Keynes’ consumption function: 

 

 C = β1 + β2Y + ε (1) 
2) Cobb-Douglas production function: 

 

 𝑌 = 𝐴𝐾𝛽2𝐿𝛽3𝑒𝜀 (2) 

 

By taking logs, the Cobb-Douglas production function can be rewritten as: 

 

log 𝑌 = 𝛽1 + 𝛽2 log 𝐾 + 𝛽3 log 𝐿 + 𝜀, where 𝛽1 = log 𝐴 

 

3) Wage equation: 

 

 log 𝑌 = 𝛽1 + 𝛽2𝑒𝑑𝑢𝑐 + 𝛽3𝑎𝑔𝑒 + ⋯ + 𝜀 (3) 

 

Sample Information 

 Have a sample of “n” observations:  {yi ; xi1, xi2, …., xik} ;    i = 1, 2, …., n 

 We assume that these observed values are generated by the population model. 

 

Let’s take the case where the model is linear in the parameters: 

 

 𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖   ;    𝑖 = 1, … , 𝑛 (4) 

 

Recall that the β’s and ε are unobservable. So, yi is generated by 2 components: 

1.  Deterministic component:   ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1  . 

2.  Stochastic component:       εi  . 

 

So, the yi’s must be “realized values” of a random variable. 

 

Objectives: 

(i) Estimate unknown parameters 

(ii) Test hypotheses about parameters 

(iii) Predict values of 𝑦 outside sample 

 

Interpreting the Parameters in a Model 

Note that the β’s in equation (4) have an important economics interpretation: 

 



𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝛽1;  etc. 

 

The parameters are the marginal effects of the x’s on y, with other factors held constant (ceteris 

paribus). For example, from equation (1): 

𝜕𝐶
𝜕𝑌⁄ = 𝛽2 = 𝑀. 𝑃. 𝐶. 

 

We might wish to test the hypothesis that 𝛽2 = 0.9, for example. 

 

Depending on how the population model is specified, however, the β’s may not be interpreted as 

marginal effects. For example, after taking logs of the Cobb-Douglas production function in (2), 

we get the following population model: 

 

log 𝑌 = 𝛽1 + 𝛽2 log 𝐾 + 𝛽3 log 𝐿 + 𝜀, 
and 

 

𝛽2 =
𝜕𝑌 𝑌⁄

𝜕𝐾 𝐾⁄
, 

 

so that 𝛽2 is the elasticity of output with respect to capital. The point is that we need to be careful 

about how the parameters of the model are interpreted. 

 

How could we test the hypothesis of constant returns to scale in the above Cobb-Douglas model? 

 

So, we have a stochastic model that might be useful as a starting point to represent economics 

relationships. We need to be especially careful about the way in which we specify both parts of 

the model (the deterministic and stochastic parts). 

1.2 Assumptions of OLS 

All “models” are simplifications of reality. Presumably we want our model to be simple but 

“realistic” – able to explain actual data in a reliable and robust way. 

 

To begin with we’ll make a set of simplifying assumptions for our model. In fact, one of the 

main objectives of Econometrics is to re-consider these assumptions – are they realistic; can they 

be tested; what if they are wrong; can they be “relaxed”? The assumptions relate to: (1) 

functional form (parameters); (2) regressors; (3) disturbances. 

A.1: Linearity 

The model is linear in the parameters: 

 



𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖 + 𝜀𝑖   ;    𝑖 = 1, … , 𝑛. 
 

Linearity in the parameters allows the model to be written in matrix notation. Let, 

 

𝒚 =
[

𝑦1

⋮
𝑦𝑛

]

(𝑛 × 1)

; 𝜷 =
[
𝛽1

⋮
𝛽𝑘

]

(𝑘 × 1)

; 𝑋 =
[

𝑥11 𝑥12

𝑥21 𝑥22
⋯

𝑥1𝑘

𝑥2𝑘

⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]

(𝑛 × 𝑘)

 ; 𝜺 =
[

𝜀1

⋮
𝜀𝑛

]

(𝑛 × 1)

. 

 

Then, we can write the model, for the full sample, as: 

 

𝒚 = 𝑋𝜷 + 𝜺 

 

If we take the ith row (observation) of this model we have: 

 

  𝑦𝑖 = 𝒙𝑖𝜷 + 𝜀𝑖 (scalar) 

 

Notational points 

i. Vectors are in bold. 

ii. The dimensions of vectors/matrices are written (rows × columns). 

iii. The first subscript denotes the row, the second subscript the column.  

iv. Some texts (including Greene, 2011), use the convention that vectors are columns. 

Hence, when an observation (row) is extracted from the 𝑋 matrix, it is transformed into a 

column. Hence, the above equation would be expressed as 𝑦𝑖 = 𝒙𝑖
′𝜷 + 𝜀𝑖. 

A.2: Full Rank 

We assume that there are no exact linear dependencies among the columns of 𝑋 (if there were, 

then one or more regressor is redundant). Note that 𝑋 is (𝑛 × 𝑘) and 𝑅𝑎𝑛𝑘(𝑋) = 𝑘. So we are 

also implicitly assuming that 𝑛 > 𝑘, since 𝑅𝑎𝑛𝑘(𝐴) ≤ 𝑚𝑖𝑛. {#𝑟𝑜𝑤𝑠, #𝑐𝑜𝑙𝑠}. 
 

What does this assumption really mean? Suppose we had: 

 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2(2𝑥𝑖1) + 𝜀𝑖 

 

We can only identify, and estimate, the one function, (𝛽1 + 2𝛽2). In this model, 𝑅𝑎𝑛𝑘(𝑋) =

 𝑘 − 1 = 1. An example which is commonly found in undergraduate textbooks, of where A.2 is 

violated, is the dummy variable trap. 

A.3: Errors Have a Zero Mean 

Assume that, in the population, 𝐸(𝜀𝑖) = 0   ;    i = 1, 2, …., n. So, 



𝐸(𝜺) = 𝐸 (

𝜀1

⋮
𝜀𝑛

) = 𝟎  . 

A.4: Spherical Errors 

Assume that, in the population, the disturbances are generated by a process whose variance is 

constant (𝜎2), and that these disturbances are uncorrelated with each other: 

 

 𝑣𝑎𝑟(𝜀𝑖) = 𝜎2  ;   𝑖 = 1,2, … , 𝑛     (Homoskedasticity) 

 

 𝑐𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0  ;   ∀𝑖 ≠ 𝑗     (no Autocorrelation) 

 

Putting these assumptions together it can be shown that the “covariance matrix” for the random 

vector, 𝜺, is: 

 

𝑉(𝜺) = 𝐸 [(𝜺 − 𝐸(𝜺))(𝜺 − 𝐸(𝜺))
′
] = 𝐸[𝜺𝜺′] = [

𝐸(𝜀1𝜀1) ⋯ 𝐸(𝜀1𝜀𝑛)
⋮ ⋱ ⋮

𝐸(𝜀𝑛𝜀1) ⋯ 𝐸(𝜀𝑛𝜀𝑛)
] 

 

but... 

 

𝐸(𝜀𝑖𝜀𝑖) = 𝐸(𝜀𝑖
2) = 𝐸[(𝜀𝑖 − 0)2] = 𝑣𝑎𝑟(𝜀𝑖) = 𝜎2 

 

and 

 

𝐸(𝜀𝑖𝜀𝑗) = 𝐸[(𝜀𝑖 − 0)(𝜀𝑗 − 0)] = 𝑐𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0. 

 

So: 

 

𝑉(𝜺) = [
𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

] = 𝜎2 𝐼𝑛 

 

a scalar matrix. 

A.5: Generating Process for X 

The classical regression model assumes that the regressors are “fixed in repeated samples” 

(laboratory situation). We can assume this – very strong, though. 

 

Alternatively, allow x’s to be random, but restrict the form of their randomness – assume that the 

regressors are uncorrelated with the disturbances. The process that generates 𝑿 is unrelated to the 

process that generates 𝜺 in the population. 



A.6: Normality of Errors 

(𝜺|𝑋) ~ 𝑁[0, 𝜎2𝐼𝑛] 
 

This assumption is not as strong as it seems: 

 often reasonable due to the Central Limit Theorem (C.L.T.) 

 often not needed 

 when some distributional assumption is needed, often a more general one is ok 

Summary 

 

The classical linear regression model is: 

 𝒚 = 𝑋𝜷 + 𝜺 

 (𝜺|𝑋) ~ 𝑁[0, 𝜎2𝐼𝑛] 

 𝑅𝑎𝑛𝑘(𝑋) = 𝑘 

 Data generating processes (D.G.P.s) of 𝑋 and 𝜺 are unrelated. 

 

Implications for y (if X is non-random; or conditional on X): 

                      𝐸(𝒚) = 𝑋𝜷 + 𝐸(𝜺) = 𝑋𝜷 

         𝑉(𝒚) = 𝑉(𝜺) = 𝜎2𝐼𝑛 

Because linear transformations of a Normal random variable are themselves Normal, we also 

have:    𝒚 ~ 𝑁[𝑋𝜷 , 𝜎2𝐼𝑛] . 

Some Questions 

 How reasonable are the assumptions associated with the classical linear regression 

model? 

 How do these assumptions affect the estimation of the model’s parameters? 

 How do these assumptions affect the way we test hypotheses about the model’s 

parameters? 

 Which of these assumptions are used to establish the various results we’ll be concerned 

with? 

 Which assumptions can be “relaxed” without affecting these results? 



1.3 Deriving the OLS estimator 

Our first task is to estimate the parameters of our model, 

                      𝒚 = 𝑋𝜷 + 𝜺        𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛]  . 

Note that there are (k + 1) parameters, including σ2. 

 Many possible procedures for estimating parameters. 

 Choice should be based not only on computational convenience, but also on the 

“sampling properties” of the resulting estimator. 

 To begin with, consider one possible estimation strategy – Least Squares. 

For the ith data-point, we have: 

                      𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝜀𝑖     , 

and the population regression is: 

                     𝐸(𝑦𝑖 | 𝒙′𝒊) = 𝒙𝒊′𝜷     . 

We’ll estimate 𝐸(𝑦𝑖 | 𝒙′𝒊) by 

                     𝑦̂𝑖 = 𝒙𝒊
′𝒃. 

In the population, the true (unobserved) disturbance is εi  [ = 𝑦𝑖 − 𝒙𝒊
′𝜷] . 

When we use b to estimate β, there will be some “estimation error”, and the value, 𝑒𝑖 = 𝑦𝑖 −

𝒙𝒊′𝒃 will be called the ith “residual”. 

So,            

 

                      

The Least Squares Criterion 

“Choose b so as to minimize the sum of the squared residuals.” 

 Why squared residuals? 

 Why not absolute values of residuals? 

𝑦𝑖 = (𝒙𝒊
′𝜷 + 𝜀𝑖)  =  (𝒙𝒊

′𝒃 + 𝑒𝑖)  =  (𝑦̂𝑖 + 𝑒𝑖) 

 

unobserved             observed 

           [Population]   [Sample] 

 



 Why not use a “minimum distance” criterion? 

 

Fig 1.1. Minimizing the sum of squared residuals, for 𝑦 = {4, 2, 4, 8, 7} ; 𝑥 = {0, 2, 4, 6, 8}. 

 

Minimizing the Sum of Squared Residuals: An Optimization Problem 

𝑀𝑖𝑛.(𝒃)  ∑ 𝑒𝑖
2

𝑛

𝑖=1

       ⇔     𝑀𝑖𝑛.(𝑏)  (𝒆′𝒆) 

                                                                  ⇔      𝑀𝑖𝑛.(𝒃) [(𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃)]. 

Now, let: 

𝑆 = (𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃) = 𝒚′𝒚 − 𝒃′𝑋′𝒚 − 𝒚′𝑋𝒃 + 𝒃′𝑋′𝑋𝒃. 

Note that, 

𝒃′𝑋′𝒚      =     𝒚′𝑋𝒃. 

                                                     (1×k)(k×n)(n×1)      (1×1) 

So,         𝑆 = 𝒚′𝒚 − 2(𝒚′𝑋)𝒃 + 𝒃′(𝑋′𝑋)𝒃. 

Note: 

(i) 𝜕(𝒂′𝒙)/𝜕𝒙 = 𝒂 

(ii) 𝜕(𝒙′𝐴𝒙)/𝜕𝒙 = 2𝐴𝒙       ;         if A is symmetric  



Applying these 2 results – 

𝜕𝑆/𝜕𝒃 = 𝟎 − 2(𝒚′𝑋)′ + 2(𝑋′𝑋)𝒃 = 2[𝑋′𝑋𝒃 − 𝑋′𝒚] . 

Set this to zero (for a turning point): 

          𝑋′𝑋𝒃       =        𝑋′𝒚 ,                          (k equations in k unknowns) 

  (k×n)(n×k)(k×1)      (k×n)(n×1)                    (the “normal equations”) 

so: 

     

Notice that 𝑋′𝑋  is (k×k), and 𝑟𝑎𝑛𝑘(𝑋′𝑋) = 𝑟𝑎𝑛𝑘(𝑋) = 𝑘  (assumption). 

This implies that (𝑋′𝑋)−1 exists. 

We need the “full rank” assumption for the Least Squares estimator, b, to exist. 

None of our other assumptions have been used so far. 

Check – have we minimized S ? 

(
𝜕2𝑆

𝜕𝒃𝜕𝒃′) = 𝝏/𝝏𝒃′[2𝑋′𝑋𝒃 − 2𝑋′𝒚] = 2(𝑋′𝑋)   ;         a (k×k) matrix. 

Note that  𝑋′𝑋  is at least positive semi-definite – 

𝜂′(𝑋′𝑋)𝜂 = (𝑋𝜂)′(𝑋𝜂) = (𝑢′𝑢) = ∑ 𝑢𝑖
2 ≥ 0𝑛

𝑖=1   ; 

and so if  𝑋′𝑋  has full rank, it will be positive-definite, not negative-definite. 

So, our assumption that X has full rank has two implications – 

1.   The Least Squares estimator, b, exists. 

2.   Our optimization problem leads to the minimization of S, not its maximization! 

 

Aside – OLS formula in scalar form 

For a population model with an intercept and a single regressor, you may have seen the 

following formulas used in undergraduate textbooks: 

𝑏1 =
∑ (𝑋𝑖 − 𝑋̅)𝑛

𝑖=1 (𝑌𝑖 − 𝑌̅)

∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1

=
𝑠𝑋,𝑌

𝑠𝑋
2   , 

𝑏0 = 𝑌̅ − 𝑏1𝑋̅  , 

where 𝑠𝑋,𝑌 is the sample covariance between 𝑋𝑖 and 𝑌𝑖, and 𝑠𝑋
2 is the sample variance of 𝑋𝑖. 

 

 𝒃 = (𝑋′𝑋)−1𝑋′𝒚       ;     provided that (𝑋′𝑋)−1 exists 


