Testing Multiple Restrictions – The Wald and F Test

We'll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

Examples

• $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$; $H_0: \boldsymbol{\beta} = \mathbf{0}$ vs. $H_A: \boldsymbol{\beta} \neq \mathbf{0}$

•
$$\log(Q) = \beta_1 + \beta_2 \log(K) + \beta_3 \log(L) + \varepsilon$$
$$H_0: \beta_2 + \beta_3 = 1 \quad vs. \quad H_A: \beta_2 + \beta_3 \neq 1$$

•
$$\log(q) = \beta_1 + \beta_2 \log(p) + \beta_3 \log(y) + \varepsilon$$
$$H_0: \beta_2 + \beta_3 = 0 \quad vs. \quad H_A: \beta_2 + \beta_3 \neq 0$$

If we can obtain one model from another by imposing restrictions on the parameters of the first model, we say that the 2 models are "*Nested*".

We'll be concerned with (several) possible restrictions on β , in the usual model:

$$\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$$
; $\boldsymbol{\varepsilon} \sim N[0, \sigma^2 I_n]$
(X is non-random; $rank(X) = k$)

Let's focus on *linear restrictions*:

$$r_{11}\beta_1 + r_{12}\beta_2 + \dots + r_{1k}\beta_k = q_1$$
$$r_{21}\beta_1 + r_{22}\beta_2 + \dots + r_{2k}\beta_k = q_2$$

(*J* restrictions)

$$r_{J1}\beta_1 + r_{J2}\beta_2 + \dots + r_{Jk}\beta_k = q_J$$

Some (many?) of the r_{ij} 's may be <u>zero</u>.

• Combine these *J* restrictions:

 $R\boldsymbol{\beta} = \boldsymbol{q}$; *R* and *q* are *known*, & *non-random* $(J \times k)(k \times 1)$ $(J \times 1)$

Examples

1.
$$\beta_2 = \beta_3 = \dots = \beta_k = 0$$

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \quad q = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

2. $\beta_2 + \beta_3 = 1$ $R = \begin{bmatrix} 0 & 1 & 1 & 0 & \cdots & 0 \end{bmatrix}$; q = 1

3.
$$\beta_3 = \beta_4$$
; and $\beta_1 = 2\beta_2$
 $R = \begin{bmatrix} 0 & 0 & 1 & -1 & 0 & \cdots & 0 \\ 1 & -2 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$; $q = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$

- Suppose that we just estimate the model by LS, and get $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y}$.
- It is very unlikely that Rb = q !
- Denote m = Rb q.
- Clearly, *m* is a $(J \times 1)$ random vector.
- Let's consider the sampling distribution of *m*:

$$m = Rb - q$$
; it is a *linear* function of *b*.

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally distributed.

$$E[\mathbf{m}] = RE[\mathbf{b}] - \mathbf{q} = R\mathbf{\beta} - \mathbf{q} \qquad \text{(What assumptions used?)}$$

So, $E[\mathbf{m}] = \mathbf{0}$; iff $R\mathbf{\beta} = \mathbf{q}$
Also, $V[\mathbf{m}] = V[R\mathbf{b} - \mathbf{q}] = V[R\mathbf{b}] = RV[\mathbf{b}]R'$
 $= R\sigma^2(X'X)^{-1}R' = \sigma^2 R(X'X)^{-1}R'$
(What assumptions used?)

So, $m \sim N[0, \sigma^2 R(X'X)^{-1}R']$.

Let's see how we can use this information to *test* if $R\beta = q$. (Intuition?)

Definition: The *Wald Test Statistic* for testing $H_0: R\beta = q$ vs. $H_A: R\beta \neq q$ $W = m'[V(m)]^{-1}m$.

So, if H_0 is true:

is:

$$W = (Rb - q)' [\sigma^2 R(X'X)^{-1}R']^{-1} (Rb - q)$$
$$= (Rb - q)' [R(X'X)^{-1}R']^{-1} (Rb - q) / \sigma^2$$

Because $\boldsymbol{m} \sim N[\boldsymbol{0}, \sigma^2 R(X'X)^{-1}R']$, then *if* H_0 *is true*:

$$W \sim \chi^2_{(J)}$$
; provided that σ^2 is known.

Notice that:

- This result is valid only *asymptotically* if σ^2 is unobservable, and we replace it with *any consistent estimator*.
- We would reject H₀ if W > critical value. (*i.e.*, when m = Rb q is sufficiently "large".)

The F-statistic

In the Wald statistic formula, we will replace the unknown σ^2 with s^2 , and divide by the number of restrictions, *J*. Provided that $\varepsilon \sim N$, the F-statistic will follow an F-distribution with *J* and n - k degrees of freedom.

$$F = \frac{(Rb-q)' [R(X'X)^{-1}R']^{-1} (Rb-q)/J}{s^2} \sim F_{(J,(n-k))}$$

A More Intuitive Formulation of the F-Statistic

Let R_U^2 be the R^2 from the full, unrestricted model under the alternative hypothesis. Let R_R^2 be the R^2 from the model obtained by imposing the restrictions in the null hypothesis. Then, the F-statistic may be written as:

$$F = \frac{(R_U^2 - R_R^2)/J}{(1 - R_U^2)/(n - k)}$$

Why do we use this particular test for linear restrictions?

This *F*-test is **Uniformly Most Powerful**.

Another point to note -

$$\left(t_{(\nu)}\right)^2 = F_{(1,\nu)}$$

Restricted Least Squares Estimation:

If we test the validity of certain linear restrictions on the elements of β , and we can't reject them, how might we incorporate the restrictions (*information*) into the estimator?

Definition: The "Restricted Least Squares" (RLS) estimator of β , in the model, $y = X\beta + \varepsilon$, is the vector, b_* , which minimizes the sum of the squared residuals, subject to the constraint(s) $Rb_* = q$.

The formula for the restricted least squares estimator is:

$$\boldsymbol{b}_* = \boldsymbol{b} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})$$

- RLS = LS + "Adjustment Factor".
- What if $\mathbf{R}\boldsymbol{b} = \boldsymbol{q}$?
- What are the properties of this RLS estimator of β ?

Theorem: The RLS estimator of β is *Unbiased* if $R\beta = q$ is TRUE.

Otherwise, the RLS estimator is *Biased*.

Proof:

$$E(\boldsymbol{b}_{*}) = E(\boldsymbol{b}) - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(\boldsymbol{R}E(\boldsymbol{b}) - \boldsymbol{q})$$

= $\boldsymbol{\beta} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(\boldsymbol{R}\boldsymbol{\beta} - \boldsymbol{q})$.

So, if $R\boldsymbol{\beta} = \boldsymbol{q}$, then $E(\boldsymbol{b}_*) = \boldsymbol{\beta}$.

Theorem: The covariance matrix of the RLS estimator of β is

$$V(\boldsymbol{b}_*) = \sigma^2 (X'X)^{-1} \{ I - R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1} \}$$

Theorem: The matrix, $V(\boldsymbol{b}) - V(\boldsymbol{b}_*)$, is *at least* positive semi-definite.

- This tells us that the variability of the RLS estimator is no more than that of the LS estimator, *whether or not the restrictions are true*.
- Generally, the RLS estimator will be "more precise" than the LS estimator.

So, *if the restrictions are true*, the RLS estimator, *b*_{*}, is more efficient than the LS estimator, *b*, of the coefficient vector, *β*.

Also note the following:

- *If the restrictions are false*, and we consider MSE(*b*) and MSE(*b*_{*}), then the relative efficiency can go either way.
- If the restrictions are false, not only is **b**_{*} biased, it's also *inconsistent*.

In practice:

- Estimate the unrestricted model, using LS.
- Test $H_0: R\boldsymbol{\beta} = \boldsymbol{q}$ vs. $H_A: R\boldsymbol{\beta} \neq \boldsymbol{q}$.
- If the null hypothesis can't be rejected, re-estimate the model with RLS.

Otherwise, retain the LS estimates.