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Testing Multiple Restrictions – The Wald and F Test 

We’ll be concerned here with testing more general hypotheses than those seen to date. Also 

concerned with constructing interval predictions from our regression model. 

Examples 

        𝒚 = 𝑋𝜷 + 𝜺      ;       𝐻0: 𝜷 = 𝟎    vs.        𝐻𝐴: 𝜷 ≠ 𝟎       

        log(𝑄) = 𝛽1 + 𝛽2log (𝐾) + 𝛽3log (𝐿) + 𝜀 

       𝐻0: 𝛽2 + 𝛽3 = 1    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 1     

        log(𝑞) = 𝛽1 + 𝛽2log (𝑝) + 𝛽3log (𝑦) + 𝜀 

      𝐻0: 𝛽2 + 𝛽3 = 0    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 0     

If we can obtain one model from another by imposing restrictions on the parameters of the first 

model, we say that the 2 models are “Nested ”. 

We’ll be concerned with (several) possible restrictions on β, in the usual model: 

                          𝒚 = 𝑋𝜷 + 𝜺      ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛]  

                                 (X is non-random  ;  𝑟𝑎𝑛𝑘(𝑋) = 𝑘) 

Let’s focus on linear restrictions: 

                  𝑟11𝛽1 + 𝑟12𝛽2 + ⋯ + 𝑟1𝑘𝛽𝑘 = 𝑞1 

                  𝑟21𝛽1 + 𝑟22𝛽2 + ⋯ + 𝑟2𝑘𝛽𝑘 = 𝑞2 

                                           .                                      (J restrictions) 

                                           . 

                  𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 + ⋯ + 𝑟𝐽𝑘𝛽𝑘 = 𝑞𝐽 

Some (many?) of the 𝑟𝑖𝑗′𝑠 may be zero. 

 Combine these J restrictions: 

                           𝑅𝜷 = 𝒒                 ;    R and q are known, & non-random 

                      (𝐽 × 𝑘)(𝑘 × 1)    (𝐽 × 1)   

Examples 

1.          𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 
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             𝑅 = [
0 1
⋮ ⋮
0 0

    
0 0
⋮ ⋮
0 0

    
⋯ 0
⋮ ⋮
0 1

]        ;       𝒒 = [
0
⋮
0

] 

2.         𝛽2 + 𝛽3 = 1 

      𝑅 = [0 1 1    0 ⋯ 0]        ;        𝑞 = 1 

 

3.       𝛽3 = 𝛽4   ;     and     𝛽1 = 2𝛽2    

     𝑅 = [
0    0 1
1 −2 0

    
−1 0 ⋯
   0 0 ⋯

   
0
0

]   ;   𝑞 = [
0
⋮
0

] 

 Suppose that we just estimate the model by LS, and get 𝒃 = (𝑋′𝑋)−1𝑋′𝒚. 

 It is very unlikely that 𝑅𝒃 = 𝒒    !   

 Denote          𝒎 = 𝑅𝒃 − 𝒒 . 

 Clearly, m is a (𝐽 × 1)  random vector. 

 Let’s consider the sampling distribution of m: 

        𝒎 = 𝑅𝒃 − 𝒒              ;        it is a linear function of b. 

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally 

distributed. 

𝐸[𝒎] = 𝑅𝐸[𝒃] − 𝒒 = 𝑅𝜷 − 𝒒                           (What assumptions used?)        

So,  𝐸[𝒎] = 𝟎 ;     iff     𝑅𝜷 = 𝒒       

Also,       𝑉[𝒎] = 𝑉[𝑅𝒃 − 𝒒] = 𝑉[𝑅𝒃] = 𝑅𝑉[𝒃]𝑅′ 

                        = 𝑅𝜎2(𝑋′𝑋)−1𝑅′ = 𝜎2𝑅(𝑋′𝑋)−1𝑅′    

                                                                             (What assumptions used?) 

So,              𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  . 

Let’s see how we can use this information to test if   𝑅𝜷 = 𝒒 .          (Intuition?)        

Definition:      The Wald Test Statistic for testing 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒                    is:                    

𝑊 = 𝒎′[𝑉(𝒎)]−1𝒎 . 

So, if 𝐻0 is true: 
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                  𝑊 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

                       = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝜎2 . 

Because        𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  , then if 𝐻0 is true: 

                   𝑊 ~ 𝜒(𝐽)
2      ;                  provided that 𝜎2 is known. 

Notice that: 

 This result is valid only asymptotically if 𝜎2 is unobservable, and we replace it with any 

consistent estimator. 

 We would reject 𝐻0 if 𝑊 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒. (i.e., when 𝒎 = 𝑅𝒃 − 𝒒 is sufficiently 

“large”.)     

The F-statistic 

In the Wald statistic formula, we will replace the unknown 𝜎2 with 𝑠2, and divide by the number 

of restrictions, 𝐽. Provided that 𝜀 ~ 𝑁, the F-statistic will follow an F-distribution with 𝐽 and 𝑛 −

𝑘 degrees of freedom. 

             𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)

−1
𝑅′]

−1
(𝑅𝒃−𝒒)/𝐽

𝑠2   ~ 𝐹(𝐽,(𝑛−𝑘)) 

A More Intuitive Formulation of the F-Statistic 

Let 𝑅𝑈
2  be the 𝑅2 from the full, unrestricted model under the alternative hypothesis. Let 𝑅𝑅

2 be the 

𝑅2 from the model obtained by imposing the restrictions in the null hypothesis. Then, the F-statistic 

may be written as: 

𝐹 =
(𝑅𝑈

2 − 𝑅𝑅
2)/𝐽

(1 − 𝑅𝑈
2 ) (𝑛 − 𝑘)⁄

 

Why do we use this particular test for linear restrictions? 

This F-test is Uniformly Most Powerful. 

Another point to note – 

                 (𝑡(𝑣))
2

= 𝐹(1,𝑣)  
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Restricted Least Squares Estimation: 

If we test the validity of certain linear restrictions on the elements of β, and we can’t reject them, 

how might we incorporate the restrictions (information) into the estimator? 

Definition: The “Restricted Least Squares” (RLS) estimator of β, in the model, 𝒚 = 𝑋𝜷 + 𝜺, is 

the vector, 𝒃∗ , which minimizes the sum of the squared residuals, subject to the constraint(s) 

𝑅𝒃∗ = 𝒒 . 

The formula for the restricted least squares estimator is: 

 

 

 RLS = LS + “Adjustment Factor”. 

 What if Rb = q ? 

 What are the properties of this RLS estimator of β ? 

 

Theorem:  The RLS estimator of β is Unbiased if 𝑅𝜷 = 𝒒  is TRUE. 

                   Otherwise, the RLS estimator is Biased. 

Proof:  

𝐸(𝒃∗) = 𝐸(𝒃) − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑹𝐸(𝒃) − 𝒒) 

                     = 𝜷 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝜷 − 𝒒) . 

So, if  𝑅𝜷 = 𝒒, then 𝐸(𝒃∗) = 𝜷. 

 

Theorem:  The covariance matrix of the RLS estimator of β is 

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

Theorem:  The matrix,  𝑉(𝒃) − 𝑉(𝒃∗) , is at least positive semi-definite. 

 This tells us that the variability of the RLS estimator is no more than that of the LS 

estimator, whether or not the restrictions are true. 

 Generally, the RLS estimator will be “more precise” than the LS estimator. 

𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 



5 

 

 So, if the restrictions are true, the RLS estimator, 𝒃∗, is more efficient than the LS 

estimator, b, of the coefficient vector, β . 

Also note the following: 

 If the restrictions are false, and we consider MSE(b) and MSE(𝒃∗), then the relative 

efficiency can go either way. 

 If the restrictions are false, not only is 𝒃∗ biased, it’s also inconsistent. 

In practice: 

 Estimate the unrestricted model, using LS. 

 Test 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒 . 

 If the null hypothesis can’t be rejected, re-estimate the model with RLS. 

Otherwise, retain the LS estimates. 


