Testing Multiple Restrictions — The Wald and F Test

We’ll be concerned here with testing more general hypotheses than those seen to date. Also

concerned with constructing interval predictions from our regression model.

Examples

o y=XB+¢e ; Hy:B =0 vs. Hy:B#0
. log(Q) = By + B2log(K) + Bslog(L) + ¢
Hy:f,+B3=1 vs. Hy: B, + B3 #1
. log(q) = B1 + B.log(p) + Bslog(y) + ¢
Ho: B +B3=0 vs. HuBy+pB;#0

If we can obtain one model from another by imposing restrictions on the parameters of the first
model, we say that the 2 models are “Nested .

We’ll be concerned with (several) possible restrictions on £, in the usual model:
y=XB+e ; &~N[0,0%l,]
(X'is non-random ; rank(X) = k)
Let’s focus on linear restrictions:

1111 + 11282 + -+ 1Bk = 1

72181 + 1222 + -+ o i = q2

(J restrictions)

11P1 + 1282 + -+ i = q
Some (many?) of the r;;'s may be zero.

e Combine these J restrictions:
RB=gq ; Rand g are known, & non-random

Jxk)(kx1) (Jx1)
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3. Bs=PB. ; and By =2p,

e Suppose that we just estimate the model by LS, and get b = (X'X)"1Xy.

e ltisveryunlikely that Rb =q !
e Denote m=Rb—gq.
e Clearly, misa (J x 1) random vector.

e Let’s consider the sampling distribution of m:

m=Rb—gq ; itis a linear function of b.

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally

distributed.
E[m] = RE[b]—q=RB —q (What assumptions used?)
So, Efm]=0; iff RB=gq
Also, V[m] = V[Rb — q] = V[Rb] = RV[b]R'

= Ro2(X'X)"'R' = 62R(X'X)" R’

(What assumptions used?)

So, m~ N[0,c2R(X'X)"1R"] .
Let’s see how we can use this information to testif Rf =gq . (Intuition?)

Definition:  The Wald Test Statistic for testing Hy: R = q Vvs. Hy: RB # q
W=m'[V(m)]'m.

So, if Hy Is true:



W = (Rb— q)'[02R(X'X)"*R']"*(Rb — q)
= (Rb—q)'[RX'X)"'R']"*(Rb - q)/5* .
Because m ~ N[0,0?R(X'X)"1R'] ,thenif H, is true:
W~xty provided that o is known.
Notice that:

e This result is valid only asymptotically if o2 is unobservable, and we replace it with any
consistent estimator.
e We would reject H, if W > critical value. (i.e., when m = Rb — q is sufficiently

“large”.)

The F-statistic

In the Wald statistic formula, we will replace the unknown o2 with s2, and divide by the number
of restrictions, J. Provided that € ~ N, the F-statistic will follow an F-distribution with J and n —
k degrees of freedom.
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A More Intuitive Formulation of the F-Statistic

Let RZ be the R? from the full, unrestricted model under the alternative hypothesis. Let R be the
R? from the model obtained by imposing the restrictions in the null hypothesis. Then, the F-statistic
may be written as:

(RG — RR)/]

P a-ry/m-n

Why do we use this particular test for linear restrictions?
This F-test is Uniformly Most Powerful.

Another point to note —

(t(v))z = Fi,v)



Restricted Least Squares Estimation:

If we test the validity of certain linear restrictions on the elements of #, and we can’t reject them,
how might we incorporate the restrictions (information) into the estimator?
Definition: The “Restricted Least Squares” (RLS) estimator of £, in the model, y = XB + ¢, is

the vector, b, , which minimizes the sum of the squared residuals, subject to the constraint(s)
Rb, =q.

The formula for the restricted least squares estimator is:

b.=b—-X'X)T'R'[RX'X)"'R'I"'(Rb — q)

e RLS=LS + “Adjustment Factor”.
e WhatifRb=q?
e What are the properties of this RLS estimator of g ?

Theorem: The RLS estimator of £ is Unbiased if R = q is TRUE.
Otherwise, the RLS estimator is Biased.

Proof:

E(b,) = E(b) — (X'X)"'R'[RIX'X)"'R']"*(RE(b) — q)
=B - X'X)T'RRX'X)T'R']"'(RB - q) .
So, if RB = q, then E(b,) = B.

Theorem: The covariance matrix of the RLS estimator of g is
V(b,) =a?(X'X)"Y{I - R'[R(X'X) R IR(X'X)"1}
Theorem: The matrix, V(b) —V(b,) , is at least positive semi-definite.

e This tells us that the variability of the RLS estimator is no more than that of the LS
estimator, whether or not the restrictions are true.

e (Generally, the RLS estimator will be “more precise” than the LS estimator.



e So, if the restrictions are true, the RLS estimator, b,, is more efficient than the LS

estimator, b, of the coefficient vector, g .
Also note the following:

e If the restrictions are false, and we consider MSE(b) and MSE(b..), then the relative
efficiency can go either way.

e If the restrictions are false, not only is b, biased, it’s also inconsistent.
In practice:

e Estimate the unrestricted model, using LS.
o TestHy:RB =q Vvs. Hi:RB # q .

e If the null hypothesis can’t be rejected, re-estimate the model with RLS.

Otherwise, retain the LS estimates.



