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Testing Multiple Restrictions – The Wald and F Test 

We’ll be concerned here with testing more general hypotheses than those seen to date. Also 

concerned with constructing interval predictions from our regression model. 

Examples 

        𝒚 = 𝑋𝜷 + 𝜺      ;       𝐻0: 𝜷 = 𝟎    vs.        𝐻𝐴: 𝜷 ≠ 𝟎       

        log(𝑄) = 𝛽1 + 𝛽2log (𝐾) + 𝛽3log (𝐿) + 𝜀 

       𝐻0: 𝛽2 + 𝛽3 = 1    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 1     

        log(𝑞) = 𝛽1 + 𝛽2log (𝑝) + 𝛽3log (𝑦) + 𝜀 

      𝐻0: 𝛽2 + 𝛽3 = 0    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 0     

If we can obtain one model from another by imposing restrictions on the parameters of the first 

model, we say that the 2 models are “Nested ”. 

We’ll be concerned with (several) possible restrictions on β, in the usual model: 

                          𝒚 = 𝑋𝜷 + 𝜺      ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛]  

                                 (X is non-random  ;  𝑟𝑎𝑛𝑘(𝑋) = 𝑘) 

Let’s focus on linear restrictions: 

                  𝑟11𝛽1 + 𝑟12𝛽2 + ⋯ + 𝑟1𝑘𝛽𝑘 = 𝑞1 

                  𝑟21𝛽1 + 𝑟22𝛽2 + ⋯ + 𝑟2𝑘𝛽𝑘 = 𝑞2 

                                           .                                      (J restrictions) 

                                           . 

                  𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 + ⋯ + 𝑟𝐽𝑘𝛽𝑘 = 𝑞𝐽 

Some (many?) of the 𝑟𝑖𝑗′𝑠 may be zero. 

 Combine these J restrictions: 

                           𝑅𝜷 = 𝒒                 ;    R and q are known, & non-random 

                      (𝐽 × 𝑘)(𝑘 × 1)    (𝐽 × 1)   

Examples 

1.          𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 
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             𝑅 = [
0 1
⋮ ⋮
0 0

    
0 0
⋮ ⋮
0 0

    
⋯ 0
⋮ ⋮
0 1

]        ;       𝒒 = [
0
⋮
0

] 

2.         𝛽2 + 𝛽3 = 1 

      𝑅 = [0 1 1    0 ⋯ 0]        ;        𝑞 = 1 

 

3.       𝛽3 = 𝛽4   ;     and     𝛽1 = 2𝛽2    

     𝑅 = [
0    0 1
1 −2 0

    
−1 0 ⋯
   0 0 ⋯

   
0
0

]   ;   𝑞 = [
0
⋮
0

] 

 Suppose that we just estimate the model by LS, and get 𝒃 = (𝑋′𝑋)−1𝑋′𝒚. 

 It is very unlikely that 𝑅𝒃 = 𝒒    !   

 Denote          𝒎 = 𝑅𝒃 − 𝒒 . 

 Clearly, m is a (𝐽 × 1)  random vector. 

 Let’s consider the sampling distribution of m: 

        𝒎 = 𝑅𝒃 − 𝒒              ;        it is a linear function of b. 

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally 

distributed. 

𝐸[𝒎] = 𝑅𝐸[𝒃] − 𝒒 = 𝑅𝜷 − 𝒒                           (What assumptions used?)        

So,  𝐸[𝒎] = 𝟎 ;     iff     𝑅𝜷 = 𝒒       

Also,       𝑉[𝒎] = 𝑉[𝑅𝒃 − 𝒒] = 𝑉[𝑅𝒃] = 𝑅𝑉[𝒃]𝑅′ 

                        = 𝑅𝜎2(𝑋′𝑋)−1𝑅′ = 𝜎2𝑅(𝑋′𝑋)−1𝑅′    

                                                                             (What assumptions used?) 

So,              𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  . 

Let’s see how we can use this information to test if   𝑅𝜷 = 𝒒 .          (Intuition?)        

Definition:      The Wald Test Statistic for testing 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒                    is:                    

𝑊 = 𝒎′[𝑉(𝒎)]−1𝒎 . 

So, if 𝐻0 is true: 
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                  𝑊 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

                       = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝜎2 . 

Because        𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  , then if 𝐻0 is true: 

                   𝑊 ~ 𝜒(𝐽)
2      ;                  provided that 𝜎2 is known. 

Notice that: 

 This result is valid only asymptotically if 𝜎2 is unobservable, and we replace it with any 

consistent estimator. 

 We would reject 𝐻0 if 𝑊 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒. (i.e., when 𝒎 = 𝑅𝒃 − 𝒒 is sufficiently 

“large”.)     

The F-statistic 

In the Wald statistic formula, we will replace the unknown 𝜎2 with 𝑠2, and divide by the number 

of restrictions, 𝐽. Provided that 𝜀 ~ 𝑁, the F-statistic will follow an F-distribution with 𝐽 and 𝑛 −

𝑘 degrees of freedom. 

             𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)

−1
𝑅′]

−1
(𝑅𝒃−𝒒)/𝐽

𝑠2   ~ 𝐹(𝐽,(𝑛−𝑘)) 

A More Intuitive Formulation of the F-Statistic 

Let 𝑅𝑈
2  be the 𝑅2 from the full, unrestricted model under the alternative hypothesis. Let 𝑅𝑅

2 be the 

𝑅2 from the model obtained by imposing the restrictions in the null hypothesis. Then, the F-statistic 

may be written as: 

𝐹 =
(𝑅𝑈

2 − 𝑅𝑅
2)/𝐽

(1 − 𝑅𝑈
2 ) (𝑛 − 𝑘)⁄

 

Why do we use this particular test for linear restrictions? 

This F-test is Uniformly Most Powerful. 

Another point to note – 

                 (𝑡(𝑣))
2

= 𝐹(1,𝑣)  
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Restricted Least Squares Estimation: 

If we test the validity of certain linear restrictions on the elements of β, and we can’t reject them, 

how might we incorporate the restrictions (information) into the estimator? 

Definition: The “Restricted Least Squares” (RLS) estimator of β, in the model, 𝒚 = 𝑋𝜷 + 𝜺, is 

the vector, 𝒃∗ , which minimizes the sum of the squared residuals, subject to the constraint(s) 

𝑅𝒃∗ = 𝒒 . 

The formula for the restricted least squares estimator is: 

 

 

 RLS = LS + “Adjustment Factor”. 

 What if Rb = q ? 

 What are the properties of this RLS estimator of β ? 

 

Theorem:  The RLS estimator of β is Unbiased if 𝑅𝜷 = 𝒒  is TRUE. 

                   Otherwise, the RLS estimator is Biased. 

Proof:  

𝐸(𝒃∗) = 𝐸(𝒃) − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑹𝐸(𝒃) − 𝒒) 

                     = 𝜷 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝜷 − 𝒒) . 

So, if  𝑅𝜷 = 𝒒, then 𝐸(𝒃∗) = 𝜷. 

 

Theorem:  The covariance matrix of the RLS estimator of β is 

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

Theorem:  The matrix,  𝑉(𝒃) − 𝑉(𝒃∗) , is at least positive semi-definite. 

 This tells us that the variability of the RLS estimator is no more than that of the LS 

estimator, whether or not the restrictions are true. 

 Generally, the RLS estimator will be “more precise” than the LS estimator. 

𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 
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 So, if the restrictions are true, the RLS estimator, 𝒃∗, is more efficient than the LS 

estimator, b, of the coefficient vector, β . 

Also note the following: 

 If the restrictions are false, and we consider MSE(b) and MSE(𝒃∗), then the relative 

efficiency can go either way. 

 If the restrictions are false, not only is 𝒃∗ biased, it’s also inconsistent. 

In practice: 

 Estimate the unrestricted model, using LS. 

 Test 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒 . 

 If the null hypothesis can’t be rejected, re-estimate the model with RLS. 

Otherwise, retain the LS estimates. 


